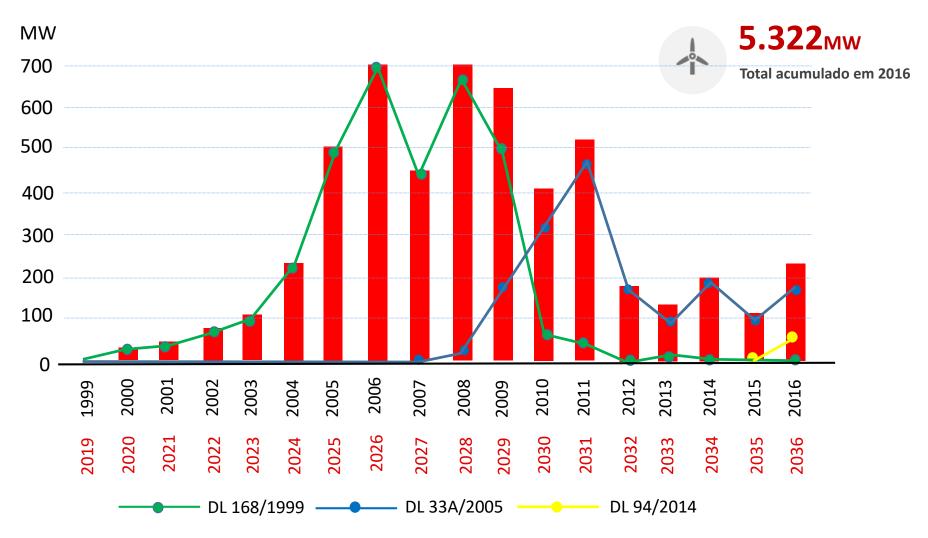


O FUTURO DO SETOR EÓLICO

EXTENSÃO DE VIDA ÚTIL E REPOWERING DAS CENTRAIS EÓLICAS


VISÃO DE UM PROMOTOR

Sector Eólico em Portugal: principais desafios para o futuro

Crescimento anual da potência instalada

É imperativo definir uma estratégia para a energia eólica para assegurar a sua continuidade no futuro:

Centrais Eólicas: opções para assegurar a sua continuidade no futuro

Extenção Vida Útil

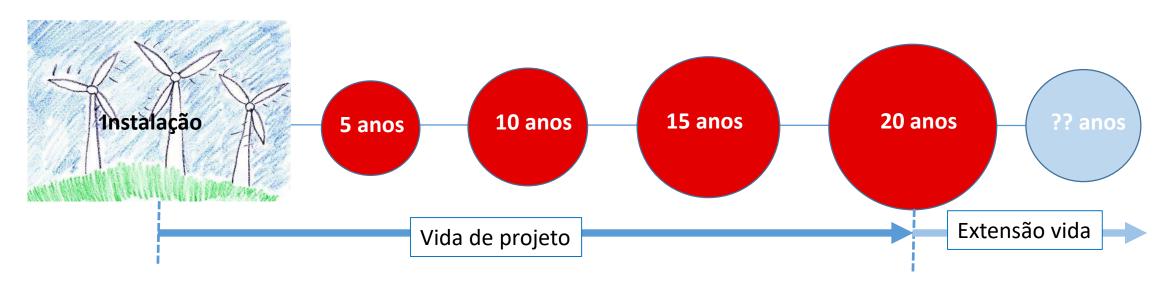
Maximizar a rentabilidade das turbinas através da melhoria ou substituição de alguns dos seus componentes e extensão da vida útil. Assegurar o equilíbrio entre os proveitos anuais adicionais e os custos de O&M.

A extensão da vida útil de uma central eólica não é só uma questão económica mas também um problema de segurança.

Repowering

Desmantelamento completo das turbinas e substituição por novas e mais eficientes, eventualmente com aumento da potência instalada.

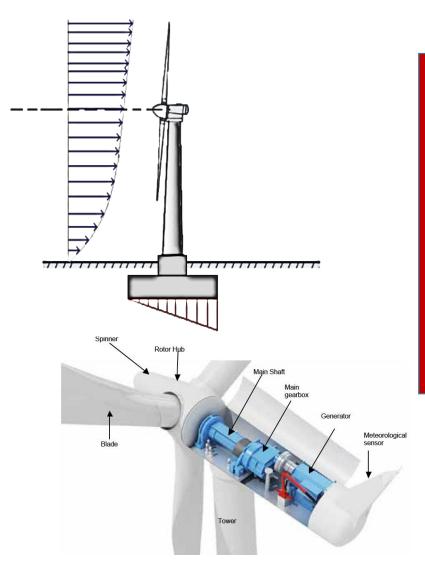
Descomissionamento


Quando a extensão da vida útil ou repowering deixam de ser uma opções viáveis.

A decisão da melhor opção depende de vários fatores: risco, enquadramento regulatório, constrangimentos ambientais, previsão de custos versus proveitos, vida útil estimada e rentabilidade expectável com a sua extensão, etc.

Centrais eólicas: extensão da vida útil

O projeto dos aerogeradores está certificado, segundo a norma internacional IEC 1400 ou IEC 61400-1, para uma vida útil de 20 anos, segundo determinadas condições de funcionamento padrão.



- É possível extender a vida útil? Quantos anos?
- Qual a metodologia a seguir para avaliar cada WTG?
- Existe alguma norma de certificação?
- Quando é necessário iniciar a análise?

Será sempre necessário uma justificação baseada em estudos técnicos e económicos, podendo implicar a substituição ou modificação de componentes

Centrais eólicas: extensão da vida útil

Componentes relevantes a avaliar:

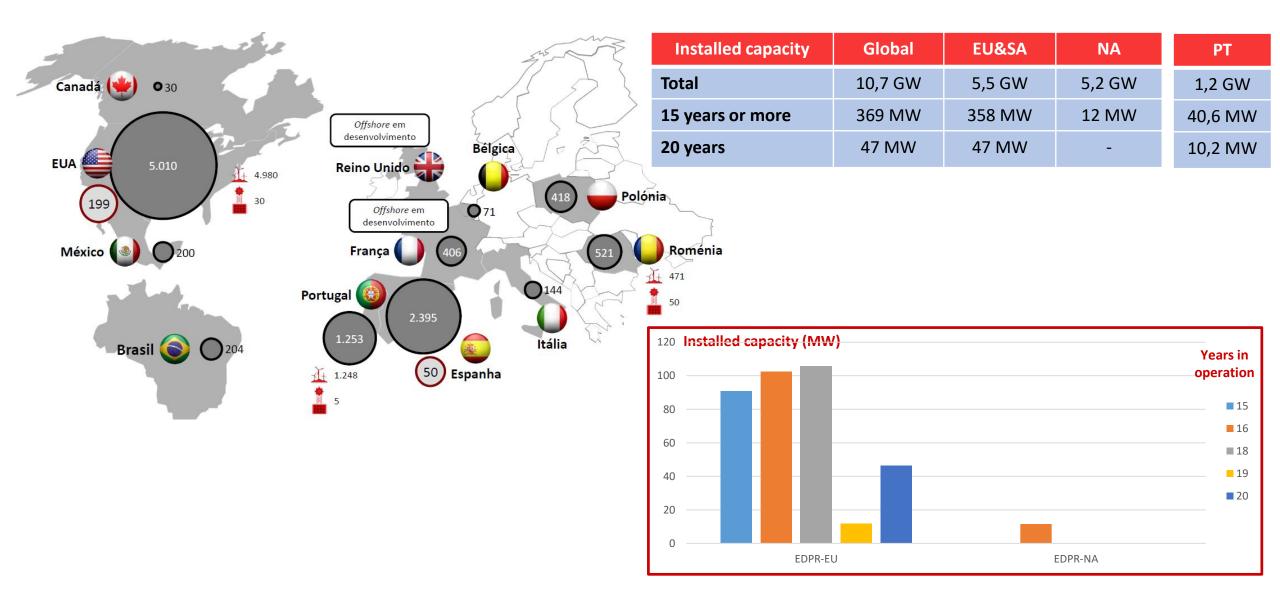
Em termos de extensão de vida, só são considerados components críticos os que envolvam: integridade estrutural e de segurança e relevância económica, designadamente:

- ✓ Pás
- ✓ Frame / King Pin (Enercon)
- **✓** Torre
- **☑** Fundação
- ☑ Eixo principal (Axle pin) em alguns casos Enercon

Centrais eólicas: extensão da vida útil

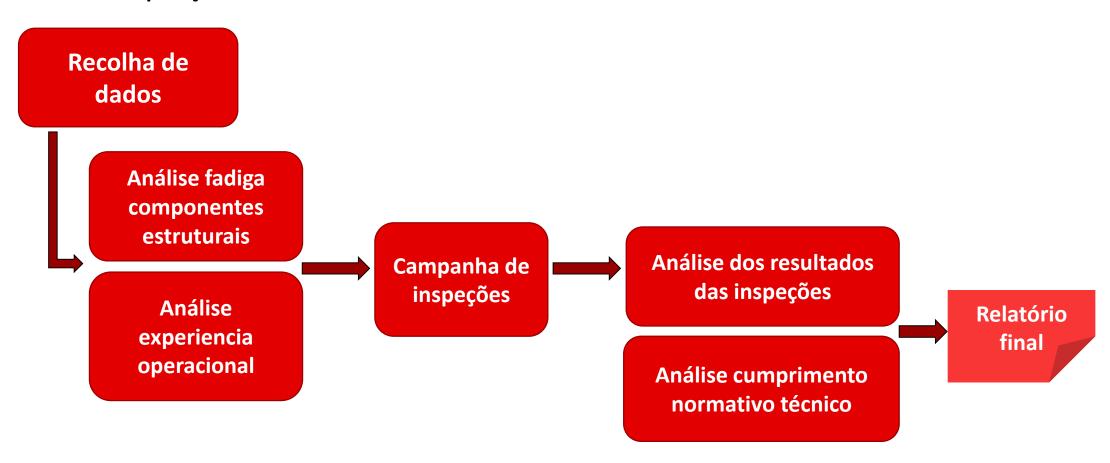
Certificações e Standards

DNVGL-ST-0262
Lifetime extension of wind turbines
DNVGL-SE-0263
Certification of lifetime extension of wind turbines



UL 4143 - Investigation for WTG - Life Time Extension (LTE)

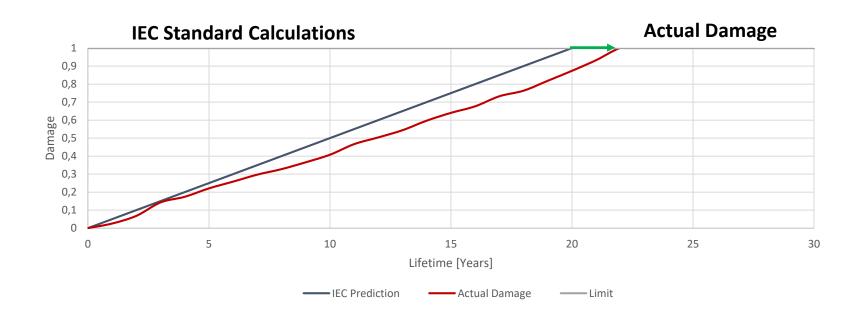
 Permite uma abordagem simplificada com um modelo aerolástico geral


EDPR global: centrais eólicas com mais de 15 anos

EDPR: Procedimento geral para análise da vida útil

15º ano de Operação

Análise da fadiga dos components estruturais


Vida útil e extensão: projecto (IEC 61400-1) vs realidade

Considerado no projecto:

- Recursos de vento estimados
- Disponibilidade esperada
- Número esperado de arranques e paragens
- Vida útil esperada para cada componente

Conhecimento atual:

- Dados de vento reais
- Número de horas de operação
- Número de arraques, paragens e paragens de emergência
- Manutenção corretiva

renováveiAnálise da fadiga dos components estruturais: Ex. Fonte da Mesa (17 V42)

		Site-20 years	Site-24 years	Site-30 years	Site-36 years	Site-40 years
Blade	R-Station4-edgewise (m=10)(16.84m)	0,79	0,81	0,83	0,84	0,85
	R-Station3-edgewise (m=10)(12.09m)	0,82	0,84	0,86	0,87	0,88
	R-Station2-edgewise (m=10) (8.52m)	0,85	0,87	0,89	0,90	0,91
	R-Station1-edgewise(m=10)(3.77m)	0,85	0,87	0,89	0,90	0,91
	R-Station4-flapwise(m=10) (16.84m)	0,84	0,86	0,88	0,89	0,90
	R-Station3-flapwise (m=10) (12.09m)	0,72	0,73	0,75	0,76	0,77
	R-Station2-flapwise (m=10) (8.52m)	0,67	0,68	0,69	0,71	0,71
	R-Station1-flapwise (m=10) (3.77m)	0,65	0,66	0,67	0,69	0,69
	Mxy Root (m=6)	0,62	0,64	0,66	0,68	0,69
Drive train	Torsor Moment	0,55	0,57	0,61	0,64	0,65
Main Frame	Bending Moment	0,58	0,61	0,65	0,68	0,69
Yaw- System	Yaw Moment	0,67	0,70	0,74	0,78	0,80
Tower	Station4-Mxy (34.3m)	0,54	0,57	0,60	0,63	0,64
	Station3-Mxy(22.54m)	0,50	0,52	0,55	0,57	0,59
	Station2-Mxy (14.7m)	0,50	0,52	0,55	0,58	0,59
	Station1-Mxy (8.8m)	0,50	0,52	0,55	0,58	0,59
	Base-Mxy	0,50	0,52	0,55	0,58	0,59

WT 12

A tabela representa a vida consumida, dos diversos components, para diferentes anos no aerogerador 12, que está sujeito a condições mais difíceis que as restantes máquinas do parque.

Este aerogerador foi submetido a inspecções mais minuciosas para determinação real de danos e avaliação objectiva de fadiga.

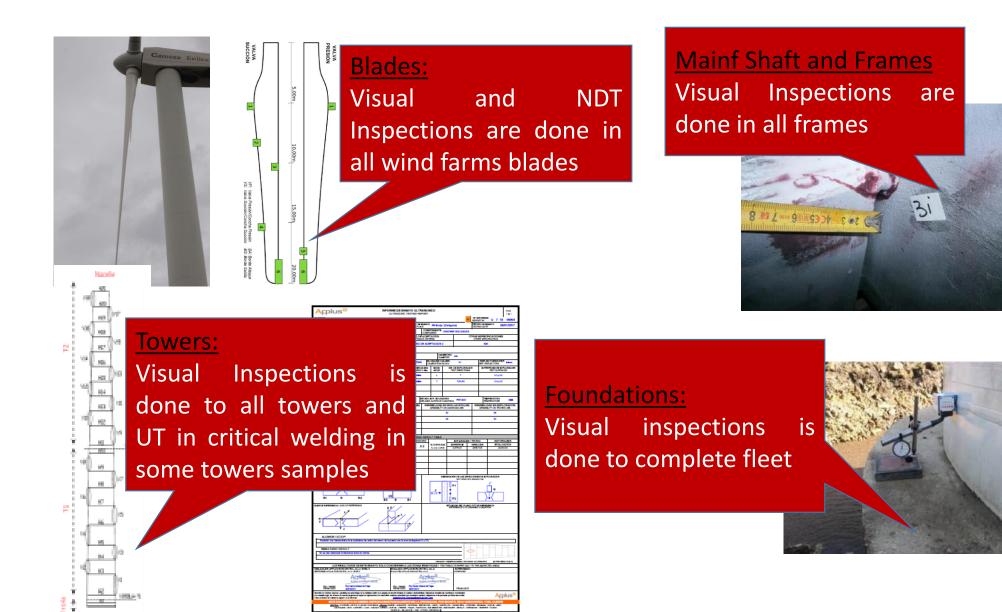
Conclusões (excepto WT 12)

(17 Vestas V42)

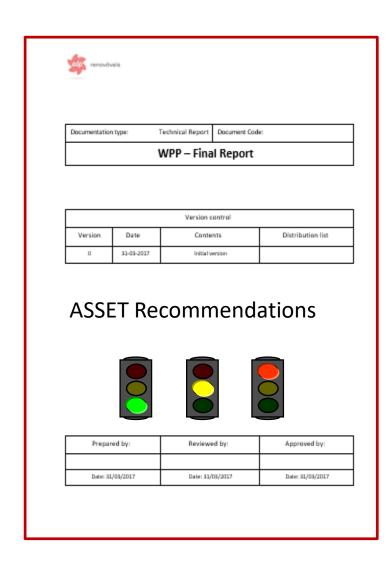
A tabela representa a vida consumida, dos diversos components, para diferentes anos.

Por exemplo enquanto as pás ao 20º ano já consumiram 85% da vida as torres ao 40º ano ainda estarão em boas condições de fadiga com apenas 64% da vida consumida.

		Site-20	Site-24	Site-30	Site-36	Site-40
		years	years	years	years	years
Blade	R-Station4-edgewise (m=10)(16.84m)	0,843	0,859	0,878	0,894	0,904
	R-Station3-edgewise (m=10)(12.09m)	0,866	0,882	0,902	0,919	0,928
	R-Station2-edgewise (m=10) (8.52m)	0,887	0,903	0,923	0,940	0,950
	R-Station1-edgewise(m=10)(3.77m)	0,887	0,903	0,923	0,940	0,950
	R-Station4-flapwise(m=10) (16.84m)	1,049	1,068	1,093	1,113	1,124
	R-Station3-flapwise (m=10) (12.09m)	0,888	0,904	0,924	0,941	0,951
	R-Station2-flapwise (m=10) (8.52m)	0,809	0,824	0,843	0,858	0,868
	R-Station1-flapwise (m=10) (3.77m)	0,763	0,777	0,794	0,809	0,817
	Mxy Root (m=6)	0,736	0,759	0,788	0,812	0,826
Drive train	Torsor Moment	0,628	0,657	0,695	0,727	0,747
Main Frame	Bending Moment	0,743	0,777	0,822	0,860	0,883
Yaw-System	Yaw Moment	0,893	0,934	0,988	1,034	1,061
	Station4-Mxy (34.3m)	0,658	0,688	0,728	0,762	0,782
Tower	Station3-Mxy(22.54m)	0,593	0,620	0,656	0,686	0,705
	Station2-Mxy (14.7m)	0,596	0,623	0,659	0,690	0,708
	Station1-Mxy (8.8m)	0,598	0,626	0,662	0,693	0,712
	Base-Mxy	0,602	0,630	0,666	0,697	0,715


Análise da experiência operacional

- Registos de manutenção
- Principais operações de manutenção corretiva / troca de componentes
 - Deficiências conhecidas
- Modificações de design. Atualizações e remodelações
- Experiência operacional
- Comportamento dos componentes estruturais
- Alterações das configurações de controle



Campanha de inspeções

renováveis Relatório final

- A extensão da vida é um novo desafio para os promotores eólicos, aplicando-se a um número de centrais eólicas cada vez maior.
- Com a publicação do novo Standard da DNVGL-ST-0262 ficaram disponíveis diversas metodologias para avaliar a extensão de vida das turbinas.
- A Metodologia Interna para avaliar a extensão de vida deve ser estabelecida pelo promotor em função do nível de maturidade de cada um.
- A decisão de extensão da vida dependerá dos resultados de avaliação de cada uma das turbinas da central eólica.
- Apesar da oportunidade e das mais valias para as centrais eólicas com programas de avaliação e extensão de vida útil, como os que foram referidos no âmbito desta conferência, continuamos a necessitar de um enquadramento regulatório a longo prazo que defina as regras para ações de repowering de forma a assegurar ou aumentar a potência instalada atual de forma a que o país possa cumprir os compromissos internacionais assumidos, presentes e futuros.

