

# The path to 2.5 GW of green hydrogen in Portugal

November 2021

Ana Barillas Head of Iberia



CONFIDENTIAL

About Aurora

# Aurora provides data-driven intelligence for the global energy transformation



Source: Aurora Energy Research

### Aurora is already providing hydrogen market analysis to major players across the value chain



# We are working with key Iberian and international utilities, investors, lenders, developers and government



Sources: Aurora Energy Research

AUR 🖴 RA

### Iberia Power Market Service Summary of service

| Market outlook and capacity development to 2050                                                                                                                                                                                                                             |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                             |                       |
| Biannual market<br>outlook reports<br>• Forecast of wholesale market prices                                                                                                                                                                                                 |                       |
| <ul> <li>Evolution of the economics of renewables and batteries</li> </ul>                                                                                                                                                                                                  |                       |
| <ul> <li>Brief quarterly updates to reflect near-term commodity price changes</li> </ul>                                                                                                                                                                                    | Access                |
| <ul> <li>Full forecast dataset in .xls until 2050 for use in investment cases</li> </ul>                                                                                                                                                                                    | via EOS               |
| <ul> <li>Forecast data</li> <li>Wholesale prices, capture prices, capacity and generation mix, etc.</li> </ul>                                                                                                                                                              | platform <sup>1</sup> |
| <b>Strategic Insight</b><br><b>reports</b> • Regular deep-dive analysis on topical issues in the evolving renewables market and new business models (e.g. pricing structures in corporate PPAs, Net Zero in Iberia, portfolio diversification, economics of batteries etc.) |                       |
| <ul> <li>Monthly policy and</li> <li>Monthly summaries of key policy and regulatory changes affecting the Iberian electricity market</li> </ul>                                                                                                                             |                       |
| <ul> <li>regulation updates</li> <li>Deep-dives on major changes or auction results</li> </ul>                                                                                                                                                                              | Ļ                     |
| Presentation of forecast update and new research                                                                                                                                                                                                                            |                       |
| <ul> <li>Group Meetings</li> <li>Networking opportunity with developers, investors and Government</li> </ul>                                                                                                                                                                |                       |
| <ul> <li>Workshops and</li> <li>Bilateral workshops to discuss Aurora's analysis and specific implications</li> </ul>                                                                                                                                                       |                       |
| analyst support • Ongoing analysis support to answer questions about our research                                                                                                                                                                                           |                       |
| <ul> <li>Aurora Spring<br/>Forum</li> <li>Our annual Spring Forum brings together senior executives of the European energy industry to discuss issue<br/>that impact the industry; full day in Oxford</li> </ul>                                                            | 25                    |

1) Subscribing companies can set up unlimited user accounts on EOS

#### Source: Aurora Energy Research

# We offer Power Market Intelligence Services across key markets and specialised products for renewables, flexibility and hydrogen

|     | Power market                | Renewable power           | Flexible and distributed power           | $H_2$ market       | Wind software      |
|-----|-----------------------------|---------------------------|------------------------------------------|--------------------|--------------------|
|     | GB Power Market Service     | GB Renewables Service     | GB Distributed & Flexible Energy Service |                    |                    |
|     | Ireland Power & Renew       | vables Market Service     | Ireland Flexibility Service              |                    |                    |
|     | German Power Market Service | German Renewables Service |                                          | European           | 'AMUN'             |
|     | French Power & Renev        | vables Market Service     | North-West European                      | Hydrogen<br>Market | Locational<br>wind |
|     | Dutch Power & Renew         | vables Market Service     | FCR Forecast                             | Service            | valuations         |
|     | Belgian Power & Renew       | ables Market Forecasts    |                                          |                    |                    |
| 瀛   | Iberian Power & Renev       | vables Market Service     |                                          |                    |                    |
|     | Italian Power & Renew       | vables Market Service     |                                          | Gas market         | Gas recip software |
|     | Nordics Power & Renew       | wables Market Service     |                                          |                    |                    |
|     | Polish Power & Renew        | vables Market Service     |                                          |                    |                    |
|     | Romanian Power & Renew      | vables Market Forecasts   |                                          | European           | 'REV Tool' GB      |
|     | Bulgarian Power & Renev     | vables Market Forecasts   |                                          | Gas Market         | reciprocating      |
| ł   | Greek Power & Renewa        | bles Market Forecasts     |                                          | Service            | valuations         |
|     | ERCOT Power & Renew         | vables Market Service     |                                          |                    |                    |
| * * | Australian Power & Rene     | ewables Market Service    | Australian Flexibility Service           |                    |                    |





### I. Policy and market context

II. The economics of electrolysis in Iberia

# The Iberian economy still relies heavily on fossil fuel consumption, particularly for the transport and industry sectors



1) Excludes LULUCF (Land Use, Land Change and Forestry) 2) Residual emissions would need to be offset through carbon sinks. 3) Includes non-renewable waste and nuclear heat.

### AUR 😞 RA

#### **Emissions in Iberia**

 To reach net zero, emissions will have to decrease by over 80% compared to today's levels, with the rest being offset with carbon sinks

#### **Final energy consumption**

- Iberia still relies heavily on imported fossil fuels to cover the energy demand
- While electrification can help to decarbonise some sectors, this alone will not suffice
- Hydrogen emerges as a key complementary solution for the decarbonisation of certain industrial sectors, heavy-duty transport, and others

I. Policy and market context

### A set of goals have been defined in order to foster the early deployment of hydrogen technologies



- **i**ii

"<u>Roadmap for Renewable Hydrogen</u>" approved by the Govt. in October 2020, and to be updated every three years

| Spanish Hydrogen Goals                                                     | 2030                        |
|----------------------------------------------------------------------------|-----------------------------|
| Fueling Stations/Buses/FCV <sup>1</sup> (L&H <sup>2</sup><br>Duty Vehicle) | 100-150/150-200/5K-<br>7.5K |
| Electrolyser installed capacity <sup>3</sup>                               | 4 GW                        |
| Share of green $H_2$ for industry consumption                              | 25%                         |
| Carbon emission reductions                                                 | 4.6 Mton                    |

<u>"National Portuguese Hydrogen Strategy"</u> released by the Govt. in May 2020, and to be updated every three years

| Portuguese Hydrogen Goals                    | 2030                      | 2050                              |
|----------------------------------------------|---------------------------|-----------------------------------|
| Fueling Stations / Buses / FCV <sup>1</sup>  | 50-100/200-<br>350/750-1K | 1k-1.5k /<br>4.5k-6k /<br>25k-30k |
| Electrolyser installed capacity <sup>4</sup> | 2 - 2.5 GW                | 10 GW                             |
| Volume of $H_2$ in gas power plants          | 5% - 15%                  | 75% - 80%                         |
| Contribution to energy demand                | 1.5% - 2%                 | 15% - 20%                         |
| Share of $H_2$ for industry consumption      | 2% - 5%                   | 20% - 25%                         |

1) Fuel Cell Vehicles; 2) Light and Heavy. 3) Milestone of 300-600 MW of electrolyser capacity to be installed by 2024. 4) Milestone of 250-500 MW of electrolyser capacity to be installed by 2025

Sources: Aurora Energy Research, MITECO, Ministry of Environment and Climate Action

# Most of the electrolyser projects in Iberia are still in early stages, but the pipeline almost doubles the Government pledges

### AUR 😞 RA

Breakdown of electrolyser projects in Iberia GW Locations of electrolyser projects in Iberia



- The current pipeline of projects almost doubles the Government pledges
- 8.1 GW of the pipeline is still in early planning stages with 2.6 GW in development and just 4 MW already operational





- Iberia boasts a total pipeline of 36 announced projects widely distributed across the region
- A number of projects are strategically located close to high emission density areas (e.g. petrochemical industrial areas)



Electrolyser projects in Iberia by developer<sup>1</sup> GW



- Albeit still in early stage of development, the 5 GW H<sub>2</sub> Sines project is the largest project in Iberia's pipeline
- Endesa has the largest portfolio as a single developer of 340 MW, while most other developments are partnerships



1) Includes solo developments and partnerships of referenced developers





- I. Policy and market context
- II. The economics of electrolysis in Iberia

II - The economics of electrolysis in Iberia

### In order to be cost competitive with blue hydrogen in Europe, green hydrogen needs to beat a target of ~2.5 $\in$ /kg H<sub>2</sub>

AUR 😞 RA

**Blue Hydrogen** 

LCOH breakdown (large scale SMR+CCS<sup>1</sup> in Great Britain, 95% load factor)  ${\rm E/kg}\,{\rm H}_2$ 



1) Carbon capture & storage. 2) Fixed operation & maintenance costs (4% of CAPEX of SMR, 5% of CAPEX from CCS). 3) Variable operation & maintenance costs. 4) Cost arising from the taxation of residual emissions (currently ~5%)

Source: Aurora Energy Research

### We have identified four business models to produce hydrogen via electrolysers

|                    | 1 Inflexible                                                                                                                                                     | 2 Flexible                                                                                                                                                                                                                     | ۲      3      Co-located (island)                                                                                                                                                      | Image: A co-located (grid)                                                                                                                                                                         |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description        | <ul> <li>Grid electricity only and<br/>runs at 95% load factor</li> </ul>                                                                                        | <ul> <li>Grid electricity only and<br/>ability to choose operating<br/>hours to minimise LCOH<sup>2</sup></li> </ul>                                                                                                           | <ul> <li>Electrolyser connected to<br/>renewable asset only (no grid<br/>connection)</li> </ul>                                                                                        | <ul> <li>Electrolyser and co-located<br/>on-site renewable assets plus<br/>direct connection to grid</li> </ul>                                                                                    |
| Key drivers        | <ul> <li>Can decouple<br/>electrolyser location<br/>from RES<sup>3</sup> location to be<br/>closer to demand</li> <li>High load factor<br/>achievable</li> </ul> | <ul> <li>'Smart' operation avoids<br/>periods of high power prices<br/>and high grid charges,<br/>accessing lower LCOH</li> <li>Can decouple electrolyser<br/>location from RES location to<br/>be closer to demand</li> </ul> | <ul> <li>Availability of zero carbon,<br/>low marginal cost renewable<br/>energy</li> <li>Can optimise capacity ratio<br/>of electrolyser:RES in order<br/>to minimise LCOH</li> </ul> | <ul> <li>Combines the benefits of grid connected and co-located business models</li> <li>Option to 'top up' electrolyser with grid electricity, or to sell renewable energy to the grid</li> </ul> |
| Key<br>Constraints | <ul> <li>Electrolyser potentially<br/>subject to costly grid<br/>charges</li> <li>Uncertain carbon<br/>intensity of hydrogen<br/>output</li> </ul>               | <ul> <li>Lower average load factor<br/>results in less hydrogen<br/>production</li> <li>Some offtakers require<br/>continuous hydrogen<br/>production</li> </ul>                                                               | <ul> <li>Intermittency of RES results<br/>in inconsistent hydrogen<br/>production</li> <li>Optimal electrolyser:RES<br/>size can result in significant<br/>spilled power</li> </ul>    | <ul> <li>Electrolyser potentially<br/>subject to costly grid charges</li> <li>Carbon intensity of grid<br/>electricity</li> <li>Must be located near to RES -<br/>often far from demand</li> </ul> |

1) GoO: Guarantees of origin, PPA: Power purchase agreement 2) LCOH: Levelised cost of hydrogen 3) RES: Renewable energy systems

### Electrolysers can be co-located with renewables; an optimal sizing of the renewable assets is crucial to deliver cheap hydrogen





- A "co-located (island)" business model describes a electrolyser colocated with one or more renewable assets. It has no grid **connection** and thus operates as an 'island'
- The key consideration for this business model is the size of the electrolyser relative to the renewable asset:
- **Under-utilised electrolyser** Given the intermittency of renewables, if the renewable asset is not sized optimally, the hydrogen costs can be high due to a low utilisation of the electrolyser
- Over-sized renewable asset If the renewable asset is too oversized relative to the electrolyser capacity, this can lead to significant energy spillage and a high LCOH as the renewable costs are also taken into account
- **Optimal size** The optimal sizing can be analysed for each location to deliver the cheapest hydrogen possible. Wind and solar co-location can help to achieve the optimal solution



AUR 🖴 RA

# The lowest LCOH of 3.6 $\epsilon/kgH_2$ is found for a combination of 1.2 MW of onshore wind and 1 MW of solar PV for a 1 MW electrolyser





- The lowest LCOH of 3.6 €/kgH<sub>2</sub> is found for a combination of 1.2 MW of onshore wind and 1 MW of solar PV for a 1 MW electrolyser
- Under this optimal combination, the electrolyser produces hydrogen at an annual load factor of 60%, equivalent to 5,300 hours
- Despite this optimal sizing for the co-located island business model, energy spillage reaches around 8% of the theoretical annual production
- However, because the electrolyser is not connected to the grid, it avoids grid connection costs and potentially high grid charges

1) Analysis based on a site located in Aragon, Spain. 2) Relative to electrolyser capacity. 3) Electrolyser maximum annual load factor

# Adding a grid connection to a co-located electrolyser can increase its load factor in periods of low RES output and increase revenues

4 Co-located (grid)

Schematic of co-located electrolyser and renewables with grid connection



- A "co-located (grid)" business model expands on the island co-located electrolyser model, providing an additional grid connection which allows for greater flexibility in hydrogen production
- With a grid connection, the electrolyser can choose to purchase grid electricity to top up its production when the renewables generation is insufficient and it is still economically viable to produce hydrogen. The system can also sell any excess renewable generation, minimising spill
- However, any power purchased from the grid will have associated grid charges, which vary by time of use, voltage level, and carries an associated carbon intensity
- The hydrogen produced can be sold to an offtaker or injected into the grid<sup>1</sup>

# However, hydrogen prices need to be high enough to incentivise RES generators to produce hydrogen vs. electricity

#### 4 Co-located (grid)

Under this business model, revenues come from two sources:



1 Hydrogen exports



- The electrolyser produces hydrogen with power from the RES assets or the grid
- Produced hydrogen is sold to offtakers e.g. in industry

- The RES assets generate electricity and sell to the grid at wholesale prices
- Or it supplies power to the electrolyser if hydrogen is more valuable

#### **Revenue optimisation**

To maximise its revenues, the asset will need to optimise its operations based on the profits from both sources, which is dictated by:

- i. Hourly power prices we use Aurora Central scenario for the analysis
- ii. Hydrogen price we assume a fixed purchase price by industrial offtakers



II - The economics of electrolysis in Iberia

# Even with attractive production economics, policy support will be needed to incentivise green hydrogen investments in Iberia

Minimum H<sub>2</sub> offtaker price required for an electrolyser to positively contribute to IRR of RES asset<sup>1</sup>,  $\notin /kgH_2$ 



AUR 😞 RA

- By 2025, a hydrogen offtaker price of ~4.3 €/kg H2 is required for the addition of an electrolyser to a grid connected 50:50 solar-plus-onshore wind RES asset to increase the system's IRR
  - Below this level, it is more profitable for the renewable asset to sell electricity
- This would require a support equivalent to 1.3 to 1.8 €/kg H2 by 2025 to encourage co-located electrolyser business models

1) Based on a grid-connected electrolyser co-located with 50:50 solar-plus-onshore wind RES asset. Analysis based on a specific site in Aragon. 2) A range of 2.5 – 3 €/kg H<sub>2</sub> is assumed for Blue H<sub>2</sub> to reflect transport costs

### Key takeaways



The Spanish and Portuguese governments have set ambitious green hydrogen targets, particularly as it relates to electrolyser installed capacities. While most of the electrolyser projects in Iberia are still in early stages, the pipeline of projects far exceed the Government pledges



Electrolyser co-location with renewables can help guarantee compliance with EU emission standards for hydrogen, but minimising the LCOH requires careful siting and sizing analysis



Before 2030, using renewables to produce electricity will remain the profit-maximising strategy unless hydrogen prices are above 3.8 €/kgH<sub>2</sub>. Therefore, incentivising hydrogen production might require subsidies equivalent to around 0.8 to 1.3 €/kgH<sub>2</sub>

### AUR 😞 RA

# Details and disclaimer

**Publication** Excerpt from Strategic Insight Report "The role of green hydrogen in Iberia"

**Date** 10 November 2021

Presentation by: Ana Barillas <u>Ana.Barillas@auroraer.com</u>

#### **General Disclaimer**

This document is provided "as is" for your information only and no representation or warranty, express or implied, is given by Aurora Energy Research Limited and its subsidiaries Aurora Energy Research GmbH and Aurora Energy Research Pty Ltd (together, "**Aurora**"), their directors, employees agents or affiliates (together, Aurora's "**Associates**") as to its accuracy, reliability or completeness. Aurora and its Associates assume no responsibility, and accept no liability for, any loss arising out of your use of this document. This document is not to be relied upon for any purpose or used in substitution for your own independent investigations and sound judgment. The information contained in this document reflects our beliefs, assumptions, intentions and expectations as of the date of this document and is subject to change. Aurora assumes no obligation, and does not intend, to update this information.

#### **Forward-looking statements**

This document contains forward-looking statements and information, which reflect Aurora's current view with respect to future events and financial performance. When used in this document, the words "believes", "expects", "plans", "may", "will", "would", "could", "should", "anticipates", "estimates", "project", "intend" or "outlook" or other variations of these words or other similar expressions are intended to identify forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements as a result of known and unknown risks and uncertainties. Known risks and uncertainties include but are not limited to: risks associated with political events in Europe and elsewhere, contractual risks, creditworthiness of customers, performance of suppliers and management of plant and personnel; risk associated with financial factors such as volatility in exchange rates, increases in interest rates, restrictions on access to capital, and swings in global financial markets; risks associated with domestic and foreign government regulation, including export controls and economic sanctions; and other risks, including litigation. The foregoing list of important factors is not exhaustive.

#### Copyright

This document and its content (including, but not limited to, the text, images, graphics and illustrations) is the copyright material of Aurora, unless otherwise stated.

This document is confidential and it may not be copied, reproduced, distributed or in any way used for commercial purposes without the prior written consent of Aurora.

# AUR 😞 RA

#### ENERGY RESEARCH