Trajetórias de Fatores de Conversão de Energia e de Emissão de GEE para Portugal

Direitos Autorais © DGEG 2025 | Esta publicação e os materiais aqui apresentados são propriedade da Direção-Geral de Energia e Geologia (DGEG) de Portugal, estando sujeitos a direitos de autor por parte da DGEG. No entanto, os materiais contidos nesta publicação podem ser livremente utilizados, partilhados, copiados, reproduzidos, impressos e/ou armazenados, desde que todo esse material seja claramente atribuído à DGEG.

Declaração de exoneração de responsabilidade | Trata-se de um documento técnico baseado em investigação. Foram tomadas todas as precauções razoáveis para verificar a fiabilidade dos materiais apresentados nesta publicação. Nem a DGEG nem qualquer um dos seus funcionários, agentes, ou outros terceiros referenciados, fornecem qualquer garantia, incluindo quanto à precisão, integridade ou adequação ao uso de tais materiais, ou em relação à não violação de direitos de terceiros, e não aceitam qualquer responsabilidade ou obrigação no que diz respeito ao uso desta publicação e dos materiais nela apresentados. As opiniões aqui explícitas ou implícitas não representam posições da DGEG, do Secretário de Estado da Energia ou do Ministério do Ambiente e Energia, nem são um aval de qualquer projeto, produto ou prestador de serviços.

Citação | DGEG (2025). *Trajetórias de Fatores de Conversão de Energia e de Emissão de GEE para Portugal*. Estudos do Sistema Energético Português nº 9. Direção-Geral de Energia e Geologia, Divisão de Estudos, Investigação e Renováveis, Lisboa, Portugal. Maio 2025. 55 pp.

Data

Versão 1 – 13 maio 13: original

Versão 2 – 20 maio 20: jet fuel e PCIs adicionados

Versão 3 – 22 maio 22, 2025: especificado 100% de eficácia das políticas públicas,

e fatores de energia primária expressos com apenas uma casa decimal

Agradecimentos

Os membros dos Grupos de Trabalho Nacionais para a transposição para a legislação portuguesa das Diretivas da UE reformuladas, conhecidas como EED e EPBD, teceram observações valiosas sobre as versões preliminares deste estudo. Paulo Salteiro, do Departamento de Estatística e Planeamento Energético da DGEG, prestou importantes esclarecimentos sobre metodologias de processamento dos dados estatísticos portugueses.

Autor Ricardo Aguiar

Direção Direção-Geral de Energia e Geologia

Endereços DGEG, Divisão de Estudos, Investigação e Renováveis

Av. 5 de outubro 208, 1069-203 Lisboa, Portugal

Sítio Web www.dgeg.gov.pt/pt/areas-transversais/investigacao-e-inovacao/publicacoes-relatorios-estudos/

Executive Summary

This document reports a study for Portugal by its Directorate-General for Energy and Geology, on the current and future values of factors used to analyse energy processes and systems, namely the lower calorific value, the conversion factor from final to primary energy, and the intensity of greenhouse gas emissions relative to final energy use.

A wide range of energy carriers are covered: electricity produced with various technologies, fossil fuels, and renewable fuels – the later of both biological and non-biological origin (i.e. based on renewable hydrogen). There are also energy carriers with a mixed composition: grid electricity, grid gas, fuels for land, sea and air travel, whose composition and renewable fraction are evolving rapidly.

The use of these factors is emphasised in the context of European Directives 2023/1791 and 2024/1275, known as EED and EPBD, respectively on energy efficiency and energy performance of buildings, whose most recent versions are currently being transposed into the Portuguese legislation. National circumstances may justify the use of specific national or regional values rather than default values. The study shows that this is indeed the case in Portugal, given its decarbonisation strategy and more advanced stage in the energy transition than the EU as a whole. The use of the proposed factors is compatible with the requirements of the Directives, since the study it presents the required characteristics: clarity in the sources of basic data and calculation methodologies, compatibility with national strategic plans such as the PNEC and subsequent plans, and standardised reporting according to EN 17423:2020.

In general, the results seem to express a tension between decarbonisation objectives and the 'efficiency first' principle. In particular, decarbonising high-temperature industrial processes, grid gas, or marine and aviation fuels, through renewable hydrogen and derived synthetic fuels, benefits from very low emissions, but implies large primary energy factors. However, what this really means is that it would be preferable to use electricity directly instead of fuels — which is indeed in line with 'efficiency first' — were it not for technical, economic and security of supply aspects that also need to be weighed up.

Sumário Executivo

Este documento reporta um estudo para Portugal, da Direção-Geral de Energia e Geologia, sobre os valores atuais e futuros de fatores utilizados na análise de processos e sistemas energéticos, designadamente o poder calorífico inferior, o fator de conversão de energia final a primária, e a intensidade de emissão de gases com efeito de estufa relativamente ao uso de energia final.

Estão abrangidos um largo conjunto de vetores energéticos: eletricidade produzida com diversas tecnologias, combustíveis fósseis, e combustíveis renováveis – estes tanto de origem biológica como não biológica (i.e. baseados em hidrogénio renovável). Também, vetores energéticos de composição mista: eletricidade da rede, gás de rede, combustíveis rodoviários, marítimos e aéreos, cuja composição e fração renovável evoluem rapidamente.

Realça-se a utilização destes fatores no contexto das Diretivas Europeias 2023/1791 e 2024/1275, conhecidas como EED e EPBD, respetivamente sobre eficiência energética e desempenho energético dos edifícios, cujas versões mais recentes estão atualmente a ser transpostas para a legislação nacional. Circunstâncias nacionais podem justificar a utilização de valores nacionais ou regionais específicos, em vez de valores por defeito. O estudo demonstra que isto é o caso de Portugal, dada a sua estratégia de descarbonização e fase na transição energética, mais avançada que na EU como um todo. A utilização dos fatores propostos é compatível com as exigências das Diretivas: clareza nas origens de dados de base e nas metodologias de cálculo, compatibilidade com os planos estratégicos nacionais como o PNEC e subsequentes, e reporte padronizado segundo a EN 17423:2020.

De um modo geral, os resultados aparentam exprimir uma tensão entre os objetivos de descarbonização e o princípio da "eficiência primeiro". Em particular, descarbonizar processos industriais de alta temperatura, gás de rede, ou combustíveis marítimos e aéreos, através de hidrogénio renovável e de combustíveis sintéticos derivados, beneficia de frações renováveis altas e reduz fortmente emissões, mas implica aumentos em termos de energia primária. No entanto, o que isto realmente significa é que seria preferível utilizar diretamente eletricidade em vez de combustíveis — o que está de facto de acordo com o princípio da "eficiência primeiro" — não fossem existir aspetos técnicos, económicos, e de segurança de abastecimento, também a ser ponderados.

Índice

EXE	CUTIVE SUMMARY	3
SUN	IÁRIO EXECUTIVO	4
1.	INTRODUÇÃO	7
1.1.	OBJETIVOS	7
1.2.	QUADRO GERAL PARA A ENERGIA	7
1.3.	QUADRO GERAL PARA AS EMISSÕES	9
1.4.	CONSIDERAÇÕES ADICIONAIS	10
2.	REVISÃO DA LITERATURA	12
2.1.	DISPOSIÇÕES EED RELEVANTES	12
2.2.	DISPOSIÇÕES RELEVANTES DA EPBD	14
2.3.	METODOLOGIAS DO EUROSTAT	17
2.4.	ESTUDOS ACADÉMICOS	18
2.5.	COMPARAÇÃO DOS FATORES DE ENERGIA PRIMÁRIA PUBLICADOS	18
3.	DADOS	20
3.1.	ESTATÍSTICAS HISTÓRICAS	20
3.2.	CENÁRIOS	21
4.	METODOLOGIAS	22
4.1.	ÂMBITO DA CADEIA ENERGÉTICA	22
4.2.	ÂMBITO TEMPORAL E HORIZONTES TEMPORAIS	22
4.3.	ÂMBITO GEOGRÁFICO	22
4.4.	CÁLCULO DOS FATORES DE ENERGIA PRIMÁRIA	22
4.5.	CÁLCULO DOS FATORES PCI	25
4.6.	CÁLCULO DOS FATORES DE INTENSIDADE DE GEE	26
4.7.	FUGAS DE GÁS E OUTRAS PERDAS	27
4.8.	PERDAS NO TRANSPORTE E ARMAZENAMENTO DE ELETRICIDADE	28
4.9.	TRANSPORTE DE COMBUSTÍVEL	28
4.10	ELETRICIDADE EXPORTADA	28
4.11	ANÁLISES DE SENSIBILIDADE	28

5.	CONVERSÃO DE ENERGIA E FATORES DE GEE	30
5.1.	VALORES CALORÍFICOS MAIS BAIXOS DAS MISTURAS DE COMBUSTÍVEIS	30
5.2.	ENERGIA PRIMÁRIA E FATORES DE EMISSÃO DE GEE	30
5.3.	CALOR	31
5.4.	ELETRICIDADE	32
5.5.	ELETRICIDADE DA REDE	33
5.6.	COMBUSTÍVEIS SÓLIDOS	36
5.7.	RESÍDUOS SÓLIDOS URBANOS	37
5.8.	COMBUSTÍVEIS LÍQUIDOS IMPORTADOS	38
5.9.	COMBUSTÍVEIS LÍQUIDOS PRODUZIDOS INTERNAMENTE	39
5.10	GASÓLEO RODOVIÁRIO (MISTURA DE COMBUSTÍVEISL)	40
5.11	GASOLINA DE ESTRADA (MISTURA DE COMBUSTÍVEIS)	41
5.12	DIESEL MARINHO (MISTURA DE COMBUSTÍVEIS)	42
5.13	JATOS (MISTURA DE COMBUSTÍVEIS)	43
5.14	. COMBUSTÍVEIS GASOSOS	44
5.15	. GÁS DA REDE PÚBLICA (MISTURA DE COMBUSTÍVEIS)	45
5.16	. COGERAÇÃO (PRODUÇÃO DE CALOR E ELETRICIDADE)	46
6.	CONCLUSÕES	48
REFE	RÊNCIAS	52

1. Introdução

1.1. Objetivos

Este trabalho foi motivado pelos processos de transposição para a legislação nacional das Diretivas Europeias 2023/1791 e 2024/1275, respetivamente relativas à eficiência energética e ao desempenho energético dos edifícios, vulgarmente conhecidas por EED (2024) e EPBD (2024).

A EED estabelece que, quando os Estados-Membros da UE calculam as economias de energia, devem utilizar determinados valores caloríficos líquidos por defeito (ou valores caloríficos inferiores, PCI). Caso os dados energéticos consistam em valores energéticos finais, mas o Estado-Membro opte por expressar as economias em termos de energia primária, serão utilizados fatores de energia primária (PEF). Também aqui existem valores por defeito, particularmente 1,9 para a eletricidade da rede.

No entanto, as circunstâncias nacionais podem justificar a utilização de outros valores para os fatores de conversão PCI e PFE. É o que acontece em Portugal, onde a abordagem estratégica nacional de descarbonização tem algumas características distintivas e a transição energética está numa fase mais avançada do que no conjunto da UE. Por exemplo, atualmente o fator de energia primária da eletricidade da rede para Portugal ronda os 1,4, muito abaixo dos 1,9 por defeito.

Quanto à EPBD, especifica que o desempenho energético dos edifícios deve ser avaliado (entre outros indicadores) por um indicador de energia primária. Para tal, é igualmente necessário especificar os fatores de energia primária. Um indicador de emissões de gases com efeito de estufa (GEE) é facultativo, mas, na prática, devem estar disponíveis fatores de emissão de gases com efeito de estufa para fins relacionados com certificados de desempenho energético, passaportes de renovação de edifícios e planos nacionais de renovação de edifícios.

Para ambas as diretivas, a questão dos valores futuros destes coeficientes é relevante, uma vez que o cabaz de eletricidade da rede e a composição das misturas de combustíveis, como o gás de rede, a gasolina e o gasóleo rodoviários, o combustível de aviação sustentável (SAF) e o gasóleo marinho, mudam significativamente à medida que a transição energética avança.

Este estudo destina-se a apoiar a transposição da EED e da EPBD para a legislação portuguesa, fornecendo cálculos dos referidos fatores utilizando dados claros de origem e metodologias, mantendo a coerência com a abordagem estratégica nacional para alcançar a neutralidade carbónica até 2050.

1.2. Quadro geral para a energia

O quadro geral mais comum para os processos relacionados com a utilização de energia nas sociedades modernas é considerar uma cadeia que conduz dos recursos energéticos ao fornecimento de energia, passando depois a transmissão (transporte e distribuição) dessa energia, acabando por satisfazer a procura de energia nos vários sectores económicos. Deixando de lado, para já, definições físicas e jurídicas rigorosas, em cada fase da cadeia de recursos/oferta/transmissão/procura, a energia é rotulada como primária/secundária/final/útil, respetivamente E_P, E_S, E_F, E_U.

Neste contexto, o conceito de vetor de energia, ou vetor energético, é útil. Este é o suporte através do qual a energia pode fluir através da cadeia energética. Os vetores energéticos mais importantes são os

combustíveis (sólidos, líquidos ou gasosos, aptos para combustão), a eletricidade, e os fluidos aquecidos ou refrigerados (ar, água ou óleo aquecido; ar ou água arrefecida).¹

Podem ser definidos fatores para contabilizar perdas na transição de uma etapa para outra, como fugas de gás, resistências elétricas, ou eficiência de conversão de dispositivos. O fator de energia primária PEF, rotulado fP na norma EN 17423:2020, representa o rácio entre a energia primária e a energia final,

$$fP = P_E/E_F$$
 [adimensional]. (1)

Além disso, considere que a origem da energia pode ser renovável – a partir de fontes inesgotáveis ² como radiação solar, eólica, hídrica, ondas oceânicas, biomassa, etc. – ou não renovável – a partir de fontes esgotáveis, como os combustíveis fósseis, incluindo os resíduos não renováveis³. O fator de energia primária pode então ser apresentado como a soma de um fator de energia primária renovável parcial

$$fP,REN = E_{P,REN}/E_F$$
 [adimensional], (1 bis)

e um fator de energia primária parcial não renovável

$$fP, nREN = E_{P, nREN} / E_F$$
 [adimensional]. (1 ter)

No entanto, o quadro aparentemente simples apresentado sobre os fluxos de energia logo se descobre esconder uma complexidade elevada. Acima de tudo, há questões de escopo sobre que processos devem ser incluídos em cada etapa. Por exemplo, a energia primária deve ser considerada como a energia eletromagnética, química, mecânica, etc. fundamental disponível na Natureza, ou já como o teor energético físico dos combustíveis ou da eletricidade? É considerada a energia utilizada na extração, produção e transporte de combustíveis? Como lidar com a cogeração simultânea de eletricidade e calor? E com importações e exportações? E quanto às utilizações não energéticas dos combustíveis?

O esquema conceptual que fornece orientação para a maioria das análises energéticas e aplicações práticas é ilustrado na Figura 1, A energia primária é considerada como a energia física contida na primeira forma de energia que pode entrar na cadeia de transformação de energia. Assim, se as fontes de energia bruta ("0" na Figura 1) já consistirem em produtos diretamente combustíveis (por exemplo, carvão, petróleo bruto, gás natural, madeira), estas são consideradas energia primária ("1", que pode ser fóssil "2", ou renovável "3"). Para produtos não combustíveis diretos, existem duas alternativas. No caso de as fontes de energia bruta fornecerem calor (por exemplo, radiação solar, fluidos geotérmicos, reações nucleares), o calor é classificado como a forma de energia primária. Nos restantes casos – tipicamente fontes de energia mecânicas ou potenciais – a forma de energia primária é a eletricidade obtida a partir da sua conversão (por exemplo, energia solar fotovoltaica, eólica, hídrica, das ondas).

A energia utilizada em infraestruturas e dispositivos de construção (por exemplo, bombas, turbinas eólicas) pode ser descontada ("4" e "5") se for feita uma análise detalhada do ciclo de vida (ACV). Isto muitas vezes não é feito: não só devido à dificuldade dos exercícios de ACV, mas também porque estes fluxos de energia podem ser atribuídos a processos que ocorrem fora dos limites de avaliação (por exemplo, extração de combustíveis fósseis e transporte de países estrangeiros) ou fora do setor energético (por exemplo, a

¹ Existem outros vetores, mas que têm pouca ou nenhuma importância neste contexto, como o ar comprimido, os feixes de laser ou as ondas sonoras

-

² Em escala de tempo humano

³ A classificação da energia nuclear não é aqui motivo de preocupação, uma vez que não existem ou estão previstas centrais desse tipo para Portugal

energia utilizada para construir barragens hidroelétricas ou centrais elétricas só pode ser associada ao setor da construção, evitando assim uma eventual dupla contagem).

As perdas de energia ("6" e "7") ocorrem durante a transformação de vetores de energia primária em secundária (por exemplo, gasóleo refinado a partir de petróleo bruto, hidrogénio proveniente de eletrólise da água, eletricidade produzida em centrais termoelétricas), durante a transmissão – ou seja, o transporte e a distribuição – (por exemplo, perdas elétricas em cabos de energia, inversores, fugas de condutas) e em resultado de processos de armazenamento (por exemplo, eficiência de entrada/saída de sistemas hídricos inversos ou baterias).

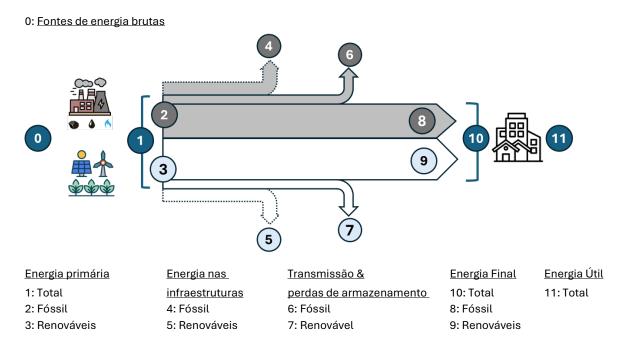


Figure 1. Esquema conceptual básico dos fluxos de energia.

A energia restante fornecida aos utilizadores finais é denominada energia final ("10"). Esta pode ser vista como sendo composta por uma parte fóssil "8" e uma parte renovável "9", embora se deva sublinhar que é muitas vezes uma classificação virtual, uma vez que o vetor de energia pode ser o mesmo (por exemplo, eletricidade). Numa fase final, os utilizadores convertem a energia final "10" em energia útil "11" com dispositivos com uma certa eficiência de conversão (por exemplo, motores, caldeiras).

Simbolicamente, o fator de energia primária total é a razão dos fluxos "10"/"1"; o fator de energia primária fóssil é a razão dos fluxos "8"/"1"; e o fator de energia primária renovável é a razão dos fluxos "9"/"1".

1.3. Quadro geral para as emissões

Quanto às emissões de GEE, elas podem ocorrer em todas as etapas da cadeia na Figura 1, O quadro quase universalmente utilizado para as emissões de gases com efeito de estufa é o fornecido pelo Painel Intergovernamental sobre as Alterações Climáticas (IPCC na sigla inglesa). No que diz respeito à energia, o conjunto de GEE geralmente considerado inclui o CO_2 , o CH_4 e o N_2O .

O fator de intensidade de emissão de GEE K_{CO2} , ou simplesmente fator de GEE, representa a relação entre as emissões globais de GEE e a energia final,

$$K_{CO2} = GEE/F_E [kg CO_2eq/MWh].$$
 (2)

Note-se que, no quadro do IPCC, as emissões de dióxido de carbono provenientes da queima de biomassa (CO₂ biogénico) não são contabilizadas no setor da energia como causadoras do aquecimento global, uma vez que já são contabilizadas no setor do uso do solo, alterações do uso do solo e florestas (LULUCF na sigla inglesa). No entanto, salienta-se que, de qualquer modo, o cálculo do CO₂ biogénico é relevante para o manuseamento de processos como a metanação de biogás, a produção de RFNBO ou a captura e armazenamento de carbono (CCS na sigla inglesa). Quanto ao metano e ao óxido nitroso, as suas emissões devem ser calculadas para todos os processos de combustão de combustíveis, incluindo os à base de biomassa.

Um fator de gases com efeito de estufa para a energia final é definido como o rácio entre as emissões acumuladas de gases com efeito de estufa (ou seja, em todas as fases) e a energia final "10" (poderiam ser definidos rácios semelhantes, por exemplo, para a energia primária ou útil, mas tal não é comum).

1.4. Considerações adicionais

Os combustíveis à base de biomassa e os combustíveis renováveis de origem não biológica (RFNBO na sigla inglesa) apresentam uma complexidade acrescida, uma vez que as diferentes vias de produção (e transporte) dos combustíveis resultarão em valores numéricos diferentes para os fatores, como alguns exemplos demonstrarão. Os produtos de biomassa densificados – como pellets e briquetes – requerem energia adicional em comparação com toros de madeira simples ou mesmo cavacos de madeira. Biolíquidos, como óleos vegetais usados, devem ser filtrados, purificados e transformados quimicamente para se tornarem componentes de gasolina ou gasóleo, como FAME e HVO. No caso do HVO, o hidrogénio pode ser de origem fóssil (gás natural/reforma a vapor) ou de origem renovável (por exemplo, eletrólise com eletricidade renovável), resultando estas alternativas em fatores de energia primária muito diferentes. Os rendimentos da produção de biogás e as necessidades energéticas são diferentes consoante as matérias-primas utilizadas e até a temperatura ambiente. O biometano pode ser obtido a partir da simples limpeza do biogás, mas também da metanação da fração de CO₂ do biogás, novamente usando hidrogénio de várias fontes. Estes poucos exemplos sugerem que, para aplicações práticas, simplificações como a média ou a utilização de valores por defeito podem ser aceitáveis, a fim de evitar ter de produzir e lidar com longas listas de fatores de energia primária específicos das matérias-primas e do processo.

Especialmente para edifícios, a questão dos limites de cálculo é importante. Embora a maioria dos vetores de energia seja fornecida a um edifício a partir de fontes distantes, em alguns casos a energia final pode ser produzida no local, como eletricidade de um sistema solar fotovoltaico (PV na sigla inglesa) no telhado, ou de fontes próximas, como eletricidade fotovoltaica de outro edifício, cogeração de calor de uma indústria próxima ou, mais geralmente, de uma comunidade de energia. Por conseguinte, a energia primária e os fatores de emissão de gases com efeito de estufa podem ser, e geralmente são, muito diferentes de acordo com os limites de avaliação.

Outras questões igualmente relevantes, como o âmbito geográfico, o âmbito temporal (por exemplo, horário a anual), horizonte temporal para a contabilização da evolução das características do sistema energético, e gestão das exportações de produção excedentária de energia.

Não é objetivo do presente documento aprofundar estas questões, mas apenas considerá-las na medida em que são relevantes para o cálculo dos fatores de emissão de PCI, PFE e GEE a utilizar no âmbito das políticas públicas portuguesas.

2. Revisão da literatura

2.1. Disposições EED relevantes

Importa salientar que a especificação oficial dos fatores de energia primária só será absolutamente necessária se Portugal decidir expressar as obrigações de eficiência energética da EED em termos de energia primária em vez de energia final. No entanto, é importante conhecer os fatores para tomar uma decisão informada; além disso, de qualquer forma, isso é indispensável para fins de EPBD, ver a próxima seção.

A EED fixa um valor por defeito de 1,9 para o fator de energia primária da eletricidade, mas permite que um Estado-Membro estabeleça o seu próprio valor de forma justificada, tendo sempre em conta o cabaz energético da última versão do Plano Nacional Energia — Clima 2030 (PNEC). Esta menção ao PNEC — que estabelece metas de eficiência energética e descarbonização para 2030, mas também as respetivas trajetórias até 2040, pelo menos — também significa que a EED indica implicitamente que deve ser adotada uma abordagem prospetiva no cálculo dos fatores de energia primária. É significativo perceber que mesmo o valor padrão 1,9 foi de fato calculado com uma abordagem prospetiva.

A seguir reproduzem-se as disposições mais relevantes para os fatores de energia primária constantes da Diretiva EED.

Artigo 9.º, Regimes de obrigação de eficiência energética

(...)

8. Os Estados Membros expressam a quantidade de economias de energia exigidas a cada parte sujeita a obrigação em termos de consumo de energia primária ou de consumo de energia final. O método escolhido para exprimir a quantidade de economias de energia exigidas é igualmente utilizado para calcular as economias declaradas pelas partes sujeitas a obrigação. Ao converter a quantidade de economias de energia, aplicam-se os valores caloríficos líquidos estabelecidos no anexo VI do Regulamento de Execução (UE) 2018/2066 da Comissão(41) e o fator de energia primária nos termos do artigo 31,o, salvo se a utilização de outros fatores de conversão puder ser justificada.

Artigo 31,º, Fatores de conversão e fatores de energia primária

- 1, Para efeitos de comparação das economias de energia e da conversão para uma unidade comparável, aplicam-se os valores caloríficos líquidos constantes do anexo VI do Regulamento (UE) 2018/2066 e os fatores de energia primária estabelecidos no n.o 2 do presente artigo, salvo se a utilização de outros valores ou fatores puder ser justificada.
- 2. É aplicável um fator de energia primária quando a economia de energia for calculada em termos de energia primária utilizando uma abordagem ascendente baseada no consumo de energia final.
- 3. Para as economias em kWh de eletricidade, os Estados Membros aplicam um coeficiente para calcular com exatidão as economias de consumo de energia primária daí resultantes. Os Estados-Membros aplicam um coeficiente implícito de 1,9, a menos que utilizem o seu poder discricionário para definir um coeficiente diferente com base em circunstâncias nacionais justificadas.

- 4. No que respeita às economias em kWh de outros vetores de energia, os Estados-Membros aplicam um coeficiente para calcular com exatidão as economias de consumo de energia primária daí resultantes.
- 5. Caso estabeleçam o seu próprio coeficiente para um valor implícito previsto nos termos da presente diretiva, os Estados-Membros estabelecem esse coeficiente através de uma metodologia transparente, com base nas circunstâncias nacionais, regionais ou locais que afetem o consumo de energia primária. As circunstâncias devem ser fundamentadas, verificáveis e baseadas em critérios objetivos e não discriminatórios.
- 6. Ao estabelecerem um coeficiente próprio, os Estados-Membros devem ter em conta o cabaz energético incluído na atualização dos seus planos nacionais integrados em matéria de energia e clima apresentada nos termos do artigo 14.o, n.o 2, do Regulamento (UE) 2018/1999 e os subsequentes planos nacionais integrados em matéria de energia e clima (PNEC) notificados à Comissão nos termos do artigo 3.o e dos artigos 7.o a 12.o desse regulamento. Se se desviarem do valor por defeito, os Estados-Membros notificam à Comissão o coeficiente que utilizam, juntamente com a metodologia de cálculo e os dados subjacentes nessas atualizações e planos subsequentes.

Podem ser retiradas indicações metodológicas adicionais do ponto 146 do prólogo da EED, relativamente à forma como os valores por defeito foram calculados pela Comissão: «Refletindo o progresso tecnológico e a crescente quota de fontes de energia renováveis no setor da produção de eletricidade, o coeficiente implícito para as economias em kWh de eletricidade deve ser revisto, a fim de refletir as alterações no fator de energia primária para a eletricidade e outros vetores de energia. A metodologia de cálculo está em conformidade com os balanços energéticos e as definições do Eurostat, exceto no que se refere ao método de atribuição da entrada de combustível para aquecimento e eletricidade em centrais de produção combinada de calor e eletricidade, para o qual a eficiência do sistema de referência, necessária para a repartição do consumo de combustível, foi alinhada com os dados do Eurostat relativos a 2015 e 2020. Os cálculos que refletem o cabaz energético do fator de energia primária para a eletricidade baseiam-se em valores médios anuais. O método de contabilização do «teor energético físico» é utilizado para a produção nuclear de eletricidade e calor e o método da «eficiência técnica de conversão» é utilizado para a produção de eletricidade e calor a partir de combustíveis fósseis e biomassa. Para as energias renováveis não combustíveis, o método é o equivalente direto baseado na abordagem da «energia primária total». Para calcular a quota de energia primária da eletricidade em cogeração, aplica-se o método estabelecido na presente diretiva. Utiliza-se uma posição de mercado média em vez de uma posição marginal. Parte-se do princípio de que as eficiências de conversão são de 100 % para as energias renováveis não combustíveis, de 10 % para as centrais geotérmicas e de 33 % para as centrais nucleares. O cálculo da eficiência total para a cogeração baseia-se nos dados mais recentes do Eurostat. São tidas em conta as perdas de conversão, transmissão e distribuição. As perdas de distribuição de vetores de energia que não a eletricidade não são tidas em conta nos cálculos, devido à falta de dados fiáveis e à complexidade do cálculo. Quanto aos limites do sistema, o fator de energia primária é 1 para todas as fontes de energia. O coeficiente selecionado para o fator de energia primária para a eletricidade é a média dos valores de 2024 e 2025, uma vez que um fator de energia primária prospetivo fornecerá um indicador mais adequado do que um indicador histórico.»

2.2. Disposições relevantes da EPBD

A variedade de fatores de conversão de energia necessários para a implementação operacional da EPBD é maior do que para a DEE, não só por este motivo, mas também pelas duas outras questões seguintes.

Em primeiro lugar, a EPBD exige explicitamente a consideração de três âmbitos espaciais (ou limites de cálculo) para vetores de energia: no local, nas proximidades e distante.

Em segundo lugar, são necessários fatores de energia primária virados para o futuro, não apenas valores históricos. O Plano Nacional de Renovação de Edifícios (PNRE) deve incluir a definição de trajetórias de descarbonização do parque imobiliário e a EPBD menciona as datas específicas de 2030, 2040 e 2050. Além disso, afirma-se explicitamente que o cálculo da energia primária deve basear-se em fatores de energia primária regularmente atualizados e prospetivos, distinguindo as energias não renováveis, renováveis e totais, e – tal como para a EED – tendo em conta o PNEC.

Os casos em que a energia primária e as emissões de gases com efeito de estufa são referidas direta ou indiretamente na EPBD são demasiado numerosos para serem aqui reproduzidos, mas é apresentada a seguir uma seleção dos mais relevantes.

Artigo 2.º, Definições

(...)

(2) «Edifício com emissões nulas», um edifício com um desempenho energético muito elevado, determinado de acordo com o anexo I, que exige uma quantidade de energia nula ou muito baixa, que produz zero ou muito baixas emissões de carbono no local a partir de combustíveis fósseis e que produz, em conformidade com o artigo 11,º, zero ou muito baixas;

(...)

- (11) «Fator de energia primária não renovável», um indicador calculado dividindo a energia primária proveniente de fontes não renováveis para um determinado vetor de energia, incluindo a energia fornecida e as despesas gerais de energia calculadas com o fornecimento aos pontos de utilização, pela energia fornecida;
- (12) «Fator de energia primária renovável», um indicador calculado dividindo a energia primária proveniente de fontes renováveis de uma fonte de energia local, próxima ou distante, fornecida através de um vetor de energia determinado, incluindo a energia fornecida e as despesas gerais de fornecimento de energia calculadas aos pontos de utilização pela energia fornecida;
- 13) «Fator de energia primária total», o somatório dos fatores de energia primária renováveis e não renováveis para um determinado vetor de energia;
- (14) «Energia proveniente de fontes renováveis»: energia proveniente de fontes não fósseis renováveis, nomeadamente energia eólica, solar (solar térmica e solar fotovoltaica) e geotérmica, energia osmótica, energia ambiente, energia das marés, das ondas e outras energias oceânicas, energia hidroelétrica, biomassa, gases de aterro, gases das instalações de tratamento de águas residuais e biogás;

(...)

23) «Emissões operacionais de gases com efeito de estufa», as emissões de gases com efeito de estufa associadas ao consumo de energia dos sistemas técnicos dos edifícios durante a utilização e o funcionamento do edifício;

(...)

- 55) «Energia proveniente de fontes renováveis produzida nas proximidades», a energia proveniente de fontes renováveis, produzida no perímetro local ou urbano de um determinado edifício, que satisfaz cumulativamente as seguintes condições:
- a) Só pode ser distribuído e utilizado dentro desse perímetro local e distrital através de uma rede de distribuição específica;
- (b) Permite o cálculo de um fator específico de energia primária válido apenas para a energia proveniente de fontes renováveis produzida nesse perímetro local ou urbano; e ainda
- (c) Pode ser utilizado no local através de uma ligação específica à fonte de produção de energia, caso essa ligação específica exija equipamento específico para a segurança do fornecimento e da contagem de energia para autoutilização do edifício

(...)

- (62) «Energia fornecida», a energia, expressa por vetor energético, fornecida aos sistemas técnicos dos edifícios através da fronteira de avaliação, para satisfazer as utilizações tidas em conta ou para produzir a energia exportada;
- 63) «Energia exportada», a percentagem de energia renovável, expressa por vetor de energia e por fator de energia primária, que é exportada para a rede energética em vez de ser utilizada no local para utilização própria ou para outras utilizações no local;

Artigo 3.º, Plano Nacional de Renovação de Edifícios

- 2. Os planos nacionais de renovação de edifícios devem incluir:
- (b) Um roteiro com metas estabelecidas a nível nacional e indicadores de progresso mensuráveis, incluindo a redução do número de pessoas afetadas pela pobreza energética, com vista a alcançar o objetivo de neutralidade climática para 2050, a fim de assegurar um parque imobiliário nacional altamente eficiente do ponto de vista energético e descarbonizado e a transformação dos edifícios existentes em edifícios com emissões nulas até 2050;

(...)

- e) Os limiares relativos às emissões operacionais de gases com efeito de estufa e à procura anual de energia primária de um edifício novo ou renovado com nível nulo de emissões, nos termos do artigo 11,º;
- f) Normas mínimas de desempenho energético para os edifícios não residenciais com base em limiares máximos de desempenho energético nos termos do n.o 1 do artigo 9.o;
- g) Trajetória nacional para a renovação do parque imobiliário residencial, incluindo os objetivos intermédios de 2030 e 2035 para a utilização média de energia primária em $kWh/(m^2ano)$, nos termos do artigo 9.º, $n.^{\circ}$ 2;

(...)

O roteiro a que se refere a alínea b) do presente número deve incluir metas nacionais para 2030, 2040 e 2050 no que respeita à taxa anual de renovação energética, ao consumo de energia primária e final do parque imobiliário nacional e às suas reduções operacionais das emissões de gases com efeito de estufa; Prazos específicos para que os edifícios não residenciais cumpram limiares máximos de desempenho energético mais baixos, nos termos do artigo 9.º, n.º 1, até 2040 e 2050, em consonância com a via de transformação do parque imobiliário nacional em edifícios com nível nulo de emissões;

Artigo 9.º, Normas mínimas de desempenho energético para os edifícios não residenciais e trajetórias de renovação progressiva do parque imobiliário residencial

1, Os Estados-Membros estabelecem normas mínimas de desempenho energético para os edifícios não residenciais que garantam que esses edifícios não excedam o limiar máximo de desempenho energético especificado, referido no terceiro parágrafo, expresso por um indicador numérico da utilização de energia primária ou final em kWh/(m²ano), até às datas especificadas no quinto parágrafo.

(...)

3. Para além da utilização de energia primária a que se referem os n.ºs 1 e 2 do presente artigo, os Estados-Membros podem estabelecer indicadores adicionais da utilização de energia primária não renovável e renovável e das emissões operacionais de gases com efeito de estufa produzidas em kgCO₂eq/(m²ano) (...)

(...)

ANEXO I, Quadro geral comum para o cálculo do desempenho energético dos edifícios

- 1, (...) O desempenho energético de um edifício é expresso por um indicador numérico da utilização de energia primária por unidade de área construída de referência por ano, em kWh/(m²ano), para efeitos de certificação do desempenho energético e de cumprimento dos requisitos mínimos de desempenho energético. A metodologia aplicada para determinar o desempenho energético de um edifício deve ser transparente e aberta à inovação.
- 2. (...) O cálculo da energia primária deve basear-se em fatores de energia primária (distinguindo fatores de energia não renovável, renováveis e totais e fatores de ponderação por vetor de energia), regularmente atualizados e prospetivos, que têm de ser reconhecidos pelas autoridades nacionais e tendo em conta o cabaz energético previsto com base no seu plano nacional em matéria de energia e clima. Esses fatores de energia primária ou fatores de ponderação podem basear-se em informações nacionais, regionais ou locais. Os fatores de energia primária ou os fatores de ponderação podem ser fixados numa base anual, sazonal, mensal, diária ou horária ou em informações mais específicas disponibilizadas para cada sistema urbano.

Os fatores de energia primária ou os fatores de ponderação são definidos pelos Estados-Membros. As escolhas efetuadas e as fontes de dados devem ser comunicadas de acordo com a norma EN 17423 ou qualquer documento que as substitua. Os Estados-Membros podem optar por um fator médio de energia primária da União para a eletricidade, estabelecido nos termos da Diretiva (UE) 2023/1791, em vez de um fator de energia primária que reflita o cabaz de eletricidade do país.

3. Para exprimir o desempenho energético de um edifício, os Estados-Membros definem indicadores numéricos adicionais da utilização total de energia primária não renovável e renovável e das emissões operacionais de gases com efeito de estufa produzidas em kgCO₂eq/(m²ano).

ANEXO II, Modelo para os planos nacionais de renovação de edifícios (referidos no artigo 3.º)

a) Panorâmica do parque imobiliário nacional

Indicadores obrigatórios

Fatores de energia primária: por vetor de energia, fator de energia primária não renovável; fator de energia primária renovável; fator de energia primária total

Consumo anual de energia primária e final (ktep): por tipo de edifício, por utilização final

Utilização média de energia primária em kWh/(m²ano) nos edifícios residenciais

Emissões operacionais anuais de gases com efeito de estufa (kgCO₂eq/m²ano), por tipo de edifício

Redução anual das emissões operacionais de gases com efeito de estufa (kgCO₂eq/m²ano), por tipo de edifício

Metas para as emissões operacionais previstas de gases com efeito de estufa (kgCO₂eq/m²ano), por tipo de edifício

Metas de redução operacional prevista das emissões de gases com efeito de estufa (%), por tipo de edifício

(e) Limiares aplicáveis aos edifícios novos e renovados com emissões nulas, a que se refere o artigo 11,º:

limiares operacionais de emissões de gases com efeito de estufa dos novos edifícios com emissões nulas; limiares operacionais de emissões de gases com efeito de estufa dos edifícios renovados com emissões nulas;

limiares anuais de utilização de energia primária nos novos edifícios com emissões nulas; limiares anuais de utilização de energia primária nos edifícios renovados com emissões nulas.

ANEXO V, Modelo de certificado de desempenho energético (referido no artigo 19.º)

- 1, Na sua primeira página, o certificado de desempenho energético deve conter, pelo menos, os seguintes elementos:
 - (...)
 - b) A utilização anual calculada de energia primária em kWh/m²ano;
 - c) A utilização final anual calculada de energia em kWh/m²ano;
 - e) Emissões operacionais de gases com efeito de estufa em kgCO₂/m²ano

2.3. Metodologias do EUROSTAT

A nível europeu, as metodologias do EUROSTAT relativas aos fatores primários de emissão são, naturalmente, uma consideração importante. Repetem-se em muitos documentos; uma boa referência é o Guia do Balanço Energético do Eurostat (Eurostat, 2019). Conteúdos relevantes são citados a seguir.

(...) O princípio geral da abordagem do Eurostat é que a forma de energia primária deve ser a primeira forma de energia no processo de produção para a qual várias utilizações de energia são, na realidade, praticadas.

A metodologia do Eurostat baseia-se no método do teor energético físico. Para os produtos energéticos diretamente combustíveis (por exemplo, carvão, petróleo bruto, gás natural, biocombustíveis, resíduos), é

o seu teor energético real medido pelos seus valores caloríficos bruto e líquido. Para os produtos que não são diretamente combustíveis, a aplicação deste princípio leva à escolha do calor como forma de energia primária para energia nuclear, geotérmica e solar térmica; e à escolha da eletricidade como forma de energia primária para a energia solar fotovoltaica, eólica, hídrica, maré, onda, oceano. A medição da forma de energia primária para os combustíveis não diretamente combustíveis é feita como produção bruta de eletricidade para aqueles em que a eletricidade é a forma de energia primária e como produção bruta de calor para aqueles em que o calor é a forma de energia primária.

De acordo com as obrigações previstas no Regulamento (CE) n.º 1099/2008 relativo às estatísticas da energia, os relatórios abrangem os fatores de produção geotérmicos e solares térmicos necessários para a produção de eletricidade e/ou calor a partir dessas fontes. Se os países não dispuserem de informações sobre as fontes de energia disponíveis, mas apenas for conhecida a quantidade de eletricidade e/ou calor produzida, recomenda-se aos países declarantes que utilizem os seguintes ganhos de eficiência para estimar os fatores de produção:

Para a eletricidade produzida a partir de fontes geotérmicas: 10 %

Para a eletricidade produzida por energia solar concentrada: 33 %

Para o calor derivado de fontes geotérmicas: 50 %

Para o calor derivado da energia solar térmica: 100 %

2.4. Estudos académicos

Inúmeros documentos podem ser consultados na literatura internacional que desenvolvem as noções de cadeias energéticas, energia primária e fatores de emissão de GEE. Para o presente documento, o relatório "Support to Primary Energy Factors Review (PEF)" (COM, 2023) e o estudo da evolução do PEF para a eletricidade nos países da UE feito por Balaras et al (2023), foram especialmente relevantes no que diz respeito a orientações metodológicas e exemplos computacionais. Para abordar os casos complexos dos combustíveis à base de biomassa e da RFNBO, os estudos mais relevantes consultados foram os de Garraín et al (2010) e Vivadinar e Purwanto (2020) sobre HVO, JRC (2014) sobre análise de combustíveis rodoviários do poço às rodas e JRC (2017) sobre vias de bioenergia sólida e gasosa. Para Portugal, os PEF para a rede elétrica pública foram estudados por Gonçalves (2019) e os fatores de emissão de GEE para a rede pública nacional são regularmente publicados pela APA (2025).

2.5. Comparação dos fatores de energia primária publicados

Dado que, para muitos vetores de energia, não haverá dados portugueses suficientemente detalhados que permitam calcular os fatores de energia primária, é relevante analisar algumas listas publicadas desses fatores.

Os PEF para a eletricidade são os mais estudados, mas são tão específicos de cada país que não têm aqui qualquer interesse. A Tabela 1 apresenta seis listas de PFE interessantes. A norma ISO 52000-1 (ISO, 2017) fornece valores padrão que podem ser usados na ausência de melhores informações. No entanto, propõe alguns valores aparentemente estranhos para vetores de energia que devem ter diferentes PEF, como o biogás e o biometano, ou toros de madeira e pellets de madeira. A Autoridade de Energia Sustentável da Irlanda (SEAI, 2024) propõe uma abordagem ainda mais radical, atribuindo 1,1 ao PEF de todos os vetores de energia. Na Áustria, a norma austríaca ÖNORM EN 15316-4-5, citada em COM (2023), fornece valores alinhados com a norma ISO 52000-1, exceto para o gasóleo de aquecimento (mais elevado) e a biomassa

sólida (inferior). O Ministério da Indústria, Energia e Turismo da Espanha (RITE, 2014) e o Departamento de Segurança Energética e Net Zero do Reino Unido (DESNZ, 2023) realizaram avaliações detalhadas que forneceram valores de PEFs consistentes com um *padrão esperado a priori*. A ação concertada sobre a EPBD produziu, há alguns anos, uma avaliação da gama de PEF nos Estados-Membros da UE, tal como declarado nos estudos obrigatórios sobre os requisitos de desempenho em termos de rentabilidade ótima (CA-EPBD, 2017). Esta análise mostrou que alguns países apenas atribuíram um PFE de 1 para todos os casos, mas, em geral, o limite superior do intervalo tem o mesmo padrão bem comportado dos estudos do Reino Unido e da Espanha.

Table 1. Fatores de energia primária propostos por diferentes fontes.

	Certificação ISO 52000- 1	Irlanda	Áustria	Reino Unido	Espanha	CA EPBD
Gás (rede pública)	1,1	1,1	1,10	1,<<	1,195	1,00 - 1,26
GPL	1,1	1,1	1,10	1,104	1,204	1,00 - 1,20
Biogás	1,4	1,1	1,40	1,442		1,00 - 1,10
Biometano	1,4	1,1	1,40			1,00 - 1,10
Óleo para aquecimento	1,1	1,1	1,20	1,136	1,182	1,00 - 1,14
HVO	1,5	1,1		1,010		1,00 - 1,10
FAME	1,5	1,1	1,50	1,152		1,00 - 1,10
Bioetanol	1,5	1,1	1,50	1,384		1,00 - 1,10
Troncos de madeira	1,2	1,1	1,13	1,065	1,037	1,00 - 1,20
Cavacos de madeira	1,2	1,1	1,13	1,069	1,037	1,00 - 1,20
Pellets de madeira	1,2	1,1	1,13	1,306	1,113	1,00 - 1,26

3. Dados

3.1. Estatísticas históricas

Os Balanços Energéticos Nacionais publicados anualmente pela DGEG (2025) são a principal fonte de informação para o presente estudo. Em anexo à matriz «vetor energético vs. processos» que constitui o balanço energético propriamente dito, existe uma lista de PCI para os vetores de energia representados, juntamente com uma breve explicação da metodologia utilizada em cada caso. Os Balanços Energéticos Nacionais são montados com os melhores dados disponíveis fornecidos pelos fornecedores de energia (importação/exportação, transformação, armazenamento, distribuição) e pelos utilizadores de energia (por exemplo, indústria). Especialmente do lado da procura, em alguns casos, as estimativas devem ser feitas com base em fontes como inquéritos (por exemplo, para o setor residencial) ou fornecedores de equipamento (bombas de calor). Podem ser necessários dados históricos adicionais, especialmente junto das empresas de eletricidade e gás e para a Madeira e os Açores.

Estes dados históricos são comunicados à DGEG com alguma incerteza, que pode ser grande para alguns vetores e processos energéticos. Além disso, embora o panorama energético esteja sempre em evolução, o formato do Balanço Energético Nacional não está a ser constantemente atualizado. Tal deve-se ao facto de ser considerado prioritário manter uma série cronológica coerente destes quadros, de modo a que a evolução do setor energético e o impacto das políticas e medidas possam ser rastreados sem perturbações decorrentes de quebras de dados. Isto significa que, embora os dados estatísticos e a lista de PCI sejam comunicados ao EUROSTAT pela DGEG de acordo com as orientações mais recentes, tal não se reflete em algumas categorias de vetores e processos energéticos. Serão agora discutidos casos específicos importantes para o cálculo da energia primária e dos fatores GEE.

A energia primária geotérmica é atribuída como calor no quadro do EUROSTAT. No entanto, nos Balanços Energéticos Nacionais, os dados geotérmicos de energia primária são fornecidos como eletricidade. Para este estudo, o calor é considerado a energia primária real. Para os cálculos conexos, o EUROSTAT propõe uma eficiência de conversão por defeito de 10,0% em eletricidade; no caso de Portugal, o valor utilizado pela DGEG é de 9,44%, com base nos relatórios da «Eletricidade dos Açores».

Os dados de energia primária de biomassa densificados são reportados nos Balanços Energéticos Nacionais na mesma coluna «Resíduos de Madeira e Vegetais» de biomassa não densificada. É provável que a energia gasta na densificação da biomassa esteja incluída na demanda energética do subsetor industrial «Madeira e Produtos de Madeira», mas não há como confirmar isso, muito menos extrair esse detalhe dos dados.

A coluna dos Balanços Energéticos Portugueses, onde são reportados os biocombustíveis, refere-se, de facto, a produtos energéticos finais, ou seja, a componentes de misturas de combustíveis como a gasolina rodoviária e o gasóleo. Confirmou-se que a energia necessária para transformar biolíquidos em biocombustíveis não está incluída na atividade de refinaria. Por conseguinte, aparece provavelmente na procura de energia do subsector industrial «Outras indústrias». Mais uma vez, não há como confirmar isso, ou extrair detalhes dos dados fornecidos.

Há, naturalmente, toda uma classe de biocombustíveis e RFNBO que não são reportados nos Balanços Energéticos Portugueses simplesmente porque ainda não são produzidos, ou são, mas apenas a uma escala piloto. Estes incluem biometano, biocombustível de aviação, hidrogénio renovável e RFNBO derivado, como metano sintético, metanol, amoníaco, combustível marinho e combustível de aviação.

3.2. Cenários

Para cálculos prospetivos, o PNEC revisto (PNEC, 2024) e o Roteiro para a Neutralidade Carbónica 2050 (RNC, 2019) são os principais documentos estratégicos a considerar, em particular o *cenário com Medidas Adicionais* («WAM») do PNEC.

Verificaram-se algumas limitações na informação disponível, nomeadamente na realização de cálculos relativos a misturas de eletricidade e combustível da rede. Para a eletricidade de rede, o PNEC e o RNC fornecem perspetivas nacionais, no entanto, para as regiões da Madeira e Açores espera-se que a velocidade e as características dos caminhos de descarbonização sejam diferentes das do continente, pelo que são necessárias perspetivas regionais específicas. Para misturas de combustíveis, a informação disponível no PNEC no momento da redação só atinge até 2040; e não poderia ser concluída até 2050 com perspetivas de RNC, porque nestes aspetos estas já estão desatualizadas — na verdade, o RNC está atualmente a ser revisto. Também não estão disponíveis: a composição dos resíduos sólidos urbanos (RSU), do gasóleo marítimo e do gás de rede após 2030; quotas de incorporação física das importações de combustíveis fósseis e renováveis nas misturas de combustíveis (ou seja, excetuando o cumprimento dos objetivos políticos com certificados); quotas de emissões de gases com efeito de estufa da refinaria a atribuir à produção de cada tipo de combustível fóssil secundário; e perdas de energia durante a distribuição de combustíveis.

Para abordar questões regionais, foram consultados documentos estratégicos oficiais para os arquipélagos, nomeadamente a *Estratégia Açoriana para a Energia 2030*, EAE (2022), o *Plano de Ação para a Energia Sustentável e Clima da Região Autónoma da Madeira* 2022-2050, PAESC (2022), e o *Roteiro para a Neutralidade Carbónica dos Açores*, RNCA (2024). Para alocar as emissões de GEE das refinarias aos combustíveis fósseis, foram utilizados dados típicos de Valdenaire et al (2022). Para abordar os restantes itens, *foi utilizado o Cenário de Neutralidade Carbónica para o Setor Energético até 2050* (DGEG, 2025), adiante designado por «CN50».

4. Metodologias

4.1. Âmbito da cadeia energética

É inegável que a ACV pode fornecer orientações para os melhores caminhos e escolhas para alcançar um sistema energético eficiente, seguro e sustentável. No entanto, uma ACV completa não será realizada para os vários vetores de energia abordados neste documento. A energia utilizada em infraestruturas de edifícios e dispositivos de conversão de energia também será excluída do âmbito de aplicação. Três razões principais para isso são as seguintes. Em primeiro lugar, embora, em princípio, uma ACV pudesse ser realizada para calcular valores históricos dos fatores, para valores prospetivos tais estimativas seriam carregadas de alta incerteza, pois se referem a um período em que os sistemas de energia passam por transições rápidas. Em segundo lugar, como o aqui se pretende calcular fatores nacionais específicos, a energia consumida noutros países para a extração, transformação e exportação de vetores de energia primária e secundária para Portugal, deve refletir-se nos fatores desses outros países, de modo a evitar a dupla contagem dos fluxos de energia em todo o sistema internacional. Em terceiro lugar, mas não menos importante, seria um esforço demasiado complexo para ser levado a cabo no tempo atribuído para produzir este documento.

No entanto, as importações de energia para Portugal serão consideradas, uma vez que são muito significativas, pelo que devem refletir-se de alguma forma na procura de energia primária e, portanto, nos fatores de energia primária.

Com as adaptações, as escolhas e argumentos acima também se aplicam aos fatores PCI e GEE.

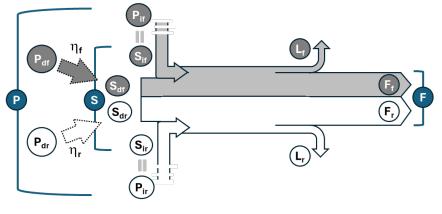
4.2. Âmbito temporal e horizontes temporais

Os valores anuais dos fatores são considerados adequados. Os valores históricos são aqui computados para 2023, o ano mais recente com um Balanço Energético Nacional disponível.

Os valores futuros são estimados com base em cenários para os anos de 2030, 2040 e 2050. É adequado realizar interpolações entre estes anos, uma vez que a evolução do PCI e do PFE abranda muito após 2030.

4.3. Âmbito geográfico

É adotado o nível NUTS I, ou seja, Portugal continental, Região Autónoma dos Açores (ou simplesmente «Açores») e Região Autónoma da Madeira (ou simplesmente «Madeira»).


Note-se que, até ao nível da NUTS III, a Madeira e os Açores não estão repartidos em ilhas componentes. Fazê-lo para os fins atuais, mantendo a coerência com uma resolução espacial semelhante no continente, implicaria definir energia primária e fatores de emissão para centenas de municípios — o que parece excessivo e, de qualquer forma, muitas vezes nem sequer significativo.

4.4. Cálculo dos fatores de energia primária

No âmbito das escolhas metodológicas definidas na secção 4.1, o esquema geral dos fluxos de energia apresentado na Figura 1 transforma-se no esquema específico apresentado na Figura 2.

Energia primária Energia Secundária Perdas de transmissão **Energia Final** P: Total S: Total F: Total Pdf: Doméstico, fóssil S_{df}: Doméstico, fóssil L_f: origem fóssil F_{f:} fóssil P_{ir}: Importado (líquido), fóssil S_{if}: Importado(liq.), fóssil L_{f:} origem renovável F_r: renovável P_{dr}: Doméstico, renovável S_{dr}: Doméstico, renovável Pir: Importado (líq.), renovável Sir: Importado (líquido), renovável

Figure 2. Esquema de fluxos de energia adotado para este estudo.

Neste regime, a energia primária é convertida em vetores de energia secundária a nível nacional, sendo as eficiências de conversão η_f ou η_r consoante a energia seja de origem fóssil ou renovável. No entanto, a energia importada é tratada como se esses ganhos de eficiência fossem fixados em 1, ou seja, a energia secundária importada é igual à energia primária importada. As emissões de GEE associadas a estas transformações externas de combustíveis primários em secundários são consideradas fora do âmbito de aplicação.

Tal é adotado principalmente porque, nos Balanços Energéticos Nacionais, tal é a situação real de muitos vetores de energia. Por exemplo, os biocombustíveis, e não os biolíquidos, são apresentados como energia primária; o mesmo para os combustíveis fósseis importados, como o GPL, a gasolina, etc. Como explicado anteriormente, isto é por razões estatísticas e históricas.

A fórmula para calcular os fatores de energia primária f_P é, por conseguinte, a seguinte:

$$f_P = P/F$$
 [1]

$$P = P_{df} + P_{if} + Pdr + P_{ir}$$
 [2]

$$f_P = f_{P; nREN} + f_{P; REN} = (P_{df} + P_{if}) / F + (P_{dr} + P_{ir}) / F$$
 [3]

No entanto, enquanto f_P pode ser calculado diretamente a partir dos dados históricos ou do cenário P e F, a estimativa dos fatores parciais f_P ; nREN e f_P ; nREN e mais difícil, porque o que está disponível na prática são valores globais de energias renováveis mais energia primária doméstica fóssil e energia primária importada. Tendo isto em conta, e no interesse da coerência, os fatores históricos e futuros são todos calculados com a mesma abordagem metodológica, vulgarmente conhecida por «eficiências técnicas». Para o caso dos valores históricos, isto é ainda referido como «histórico simulado».

Para as desagregações em componentes renováveis e fósseis, os dados auxiliares consistem em frações renováveis de energia final ρ e quotas de importações de energia renovável ϕ_r e de energia fóssil ϕ_f . Enquanto o primeiro pode, em princípio, ser calculado a partir dos Balanços Energéticos Nacionais, o segundo deve ser estimado a partir de outras referências e/ou de cenários. Outra estratégia útil é assumir as mesmas perdas percentuais de transmissão λ para fluxos de energia secundária fóssil e renovável. São dados auxiliares também as eficiências técnicas η_r e η_f . Com estes coeficientes, é possível montar um esquema de cálculo para energia final a partir de energia primária e calcular os FEP desejados, mesmo no caso de dados agregados. Os coeficientes η e λ adotados estão listados na Tabela 2, os coeficientes ρ e ϕ , ou seja, trajetórias de descarbonização e importações, foram obtidos a partir do cenário CN50.

Table 2. Valores adotados de eficiência e perdas

Produção de energia secundária	Eficiência η	Obs.
Processamento de petróleo bruto	94%	c/ produtos não energéticos
Processamento de biolíquidos	90%	FAME, bioetanol, HVO, etc.
Biogás produzido a partir de resíduos	80%	manuseamento resíduos, aquec. digestores
H ₂ renovável	75%	CN50 eletrólise da água, etc.
CH ₄ por limpeza simples de biogás	94%	Cenário CN50
CH ₄ por metanação do CO ₂ proveniente do biogás	84%	Metanação in situ CN50
CH ₄ por metanação do CO ₂ capturado	60%	Via CCU CN50
NH ₃ de H ₂	82%	Caminho Haber-Bosch
Outros RFNBO de H ₂	36%	Metanol, comb. marinho ou aviação
Centrais elétricas a gás	53%	Tipo NGCC, ver APA (2025)
Centrais elétricas a fuelóleo	41%	ver APA (2025)
Centrais elétricas de gasóleo	37%	ver APA (2025)
Grandes pilhas de combustível	60%	Entrada H ₂
Centrais elétricas a queima de resíduos	20%	ver APA (2025)
Sistemas de energia eólica, ondas, hídrica e PV	100%	por convenção
Centrais geotérmicas	9.44%	Informações da DSPEE/DGEG
Calor solar térmico e geotérmico	100%	por convenção
Densificação de biomassa sólida	94%	pellets e briquetes
Cogeração (para eletricidade)	51%	Média CN50
Processos de transmissão	Perdas λ	Obs.
Transporte de combustíveis	2%	por estrada e mar
Transporte marítimo de combustíveis	1%	do continente
Regaseificação de gás natural	1%	de GNV enviado
Fugas na rede nacional de gás, regaseificação, etc.	1%	Sistema público continental
Redes H ₂ , fugas, etc.	1%	Grelhas dedicadas
Transporte de eletricidade	2%	Rede continental VHV/HV
Armazenamento de eletricidade	3%	23% ponderado c/utilização real
Distribuição de eletricidade	7%	Redes continentais BT
Transporte de eletricidade dentro das ilhas	5%	Madeira
	3%	Açores
Eletricidade para produção de RFNBO	1%	conexões dedicadas
Transporte de curta distância de eletricidade		sistemas no local e próximos
Mistura de combustível		todos os tipos

Para vetores de energia secundária produzidos a partir de outros vetores de energia secundária, os fatores de energia primária são compostos. Por exemplo, os PEF para o metano renovável produzido a partir de hidrogénio renovável e dióxido de carbono, compostos os PEF para o processo de eletrólise (produção de H₂) e para o processo de metanação (produção de CH₄).

4.5. Cálculo dos fatores PCI

Os PCI são calculados pela DGEG e listados ao longo de cada Balanço Energético Nacional anual, mas apenas para os vetores energéticos ali representados, pelo que mais informações são fornecidas a seguir. A eletricidade e o calor têm um PCI de 1 MJ/MJ. Para as substâncias químicas «puras» (como hidrogénio, metano, metanol, etc.), o teor energético é fixo; a Tabela 3 apresenta uma lista dos valores adotados.

Table 3. Poder calorífico inferior dos vetores químicos básicos de energia

	PCI	Unidades
Hidrogénio (H ₂)	120 000	kJ/kg
Amoníaco (NH₃)	18 800	kJ/kg
Metano (CH ₄)	50 000	kJ/kg
Metanol (CH₃OH)	21 000	kJ/kg

Para muitos produtos energéticos de origem 100% fóssil, como gasóleo ou combustível de aviação, valores aproximadamente constantes ao longo do tempo podem ser considerados. Nestes casos, é adotado o valor por defeito do EUROSTAT (e, frequentemente, também pela Agência Internacional da Energia), cf. Quadro 4. Para o gás natural e os produtos de carvão, devem ser utilizados PCI atualizados anualmente no Balanço Energético Nacional; para o PCI prospetivo, são propostos os valores de 2023 reportados pelos operadores comerciais, também apresentados no Quadro 4.

Table 4. Poder calorífico inferior dos combustíveis fósseis

Vetor de energia	PCI	Unidades	Obs.
Gás natural	37 966	kJ/Nm3	Relatório da REN Gasodutos, 2023
Hulha	24 664	kJ/kg	Comunicado pelos operadores, 2023
Antracite	30 359	kJ/kg	Comunicado pelos operadores, 2023
Coque de carvão	30 811	kJ/kg	Comunicado pelos operadores, 2023
Petróleo bruto	43 040	kJ/kg	EUROSTAT
Butano, propano e gás GPL	46 000	kJ/kg	EUROSTAT
Gasolina (fóssil)	44 000	kJ/kg	EUROSTAT
Gasóleo (fóssil)	43 000	kJ/kg	EUROSTAT
Combustível para aviação	43 000	kJ/kg	EUROSTAT
Gasolina	43 806	kJ/kg	EUROSTAT
Fuelóleo	40 000	kJ/kg	EUROSTAT
Nafta	44 000	kJ/kg	EUROSTAT
Coque de petróleo	32 000	kJ/kg	EUROSTAT
Asfaltos	39 000	kJ/kg	EUROSTAT
Parafinas	40 000	kJ/kg	EUROSTAT
Solventes	43 600	kJ/kg	EUROSTAT
Propilénio	49 820	kJ/kg	EUROSTAT

No que diz respeito aos combustíveis renováveis, a sua origem e os seus modos de produção são diversos e, muitas vezes, não são conhecidos em pormenor. Para valores históricos, deve ser utilizado novamente o PCI atualizado anualmente no Balanço Energético Nacional. Para o PCI prospetivo, são propostos os valores de 2023 reportados pelos operadores comerciais, conforme apresentado no Quadro 5. Além disso, o quadro 5 também inclui valores por defeito para o óleo vegetal tratado com hidrogénio (HVO) e o éster metílico de ácidos gordos (FAME), embora este último seja algo sensível à matéria-prima utilizada.

Vetor de energia PCI Unidades Bioetanol 27 000 kJ/kg Comunicado pelos operadores, 2023 **Bio-ETBE** 36 000 kJ/kg Comunicado pelos operadores, 2023 Carvão vegetal 29 517 kJ/kg Comunicado pelos operadores, 2023 Resíduos não renováveis 23 534 kJ/kg Comunicado pelos operadores, 2023 Madeira 10 467 kJ/kg Comunicado pelos operadores, 2023 Resíduos vegetais e florestais 7 866 kJ/kg Comunicado pelos operadores, 2023 Briquetes / Pellets 18 841 kJ/kg Comunicado pelos operadores, 2023 7 955 Resíduos sólidos urbanos kJ/kg Comunicado pelos operadores, 2023 Licores sulfurosos 11 603 kJ/kg Comunicado pelos operadores, 2023 Biogás 22 468 kJ/Nm3 Comunicado pelos operadores, 2023 Outras renováveis 20 097 kJ/kg Comunicado pelos operadores, 2023 HVO 43 000 kJ/kg PT 15940:2016 **FAME** 37 000 kJ/kg PT 14214:2012

Table 5. Poder calorífico inferior dos combustíveis renováveis

Os restantes casos respeitam a misturas de combustíveis, com uma composição que muda ao longo do tempo. Para PCI prospetivo, eles são calculados como uma média ponderada do PCI para cada componente, de acordo com sua participação na mistura. Estes são comunicados na secção 5, juntamente com os fatores PEF e GEE.

4.6. Cálculo dos fatores de intensidade de GEE

Para o cálculo das emissões de gases com efeito de estufa, as emissões provenientes da combustão de combustíveis são largamente dominantes sobre as relacionadas com a sua produção e transporte.

Para a combustão de combustível, os fatores de emissão foram extraídos do Sexto Relatório de Avaliação do IPCC (IPCC, 2021). Em resumo, os Potenciais de Aquecimento Global para a combustão dos três principais gases, no horizonte temporal de 100 anos, foram $CO_2 = 1$, $CH_4 = 27$, N2O = 273. Além disso, para o gás natural e outros fugas de metano, foi adotado o valor $CH_4 = 29,8$.

Por razões de coerência com o âmbito da cadeia energética, as emissões relacionadas com a produção de combustíveis importados não foram consideradas. As emissões relacionadas com a produção interna de biocombustíveis (por exemplo, biomassa densificada, biogás) também não serão tidas em conta. No entanto, serão consideradas as relacionadas com a produção interna de combustíveis fósseis, ou seja, a transformação na refinaria de Sines de petróleo bruto e matérias-primas da refinaria em combustíveis fósseis secundários, como gasóleo (fóssil puro), gasolina, combustível marinho, etc. Os coeficientes necessários para estimar as emissões das refinarias atribuíveis a vários combustíveis foram obtidos a partir de um relatório CONCAWE (Valdenaire et al., 2022).

Para a etapa de transporte, as emissões não são consideradas devido à sua baixa importância relativa, bem como à alta incerteza na sua estimativa. No entanto, as fugas durante o manuseamento e a transmissão por gasoduto foram contabilizadas para a mistura de gás da rede e para o hidrogénio da rede.

O Quadro 6 apresenta o conjunto final de fatores de intensidade de emissão de gases com efeito de estufa proposto.

Table 6. Fatores de emissão de gases com efeito de estufa (kgCO2eq./MWh)

Vetor de energia	Emissões de GEE na produção e processamento	Emissões de gases com efeito de estufa na utilização final (combustão)	Emissões totais de gases com efeito de estufa
Madeira		34	34
Carvão vegetal		20	20
Biocombustíveis	1	2	2
GPL	28	228	255
Gasolina	21	241	262
Combustível para aviação	21	229	250
Gasóleo	23	268	291
Óleo para aquecimento	16	268	284
Diesel marítimo	16	268	284
Fuelóleo marinho	2	280	281
Outros produtos fósseis	6	268	273
Gás natural		203	203

As emissões de misturas de combustíveis foram calculadas de acordo com a percentagem e os fatores de emissão dos vários componentes (renováveis e fósseis), e tendo também em conta as quotas de combustíveis importados e produzidos internamente.

4.7. Fugas de gás e outras perdas

Os dados do Balanços Energéticos Nacionais mostram fugas de transmissão na rede pública de gás de cerca de 0,2% apenas. Note-se que é provável que seja consumida energia adicional na regaseificação, bombagem e armazenamento de gás. É igualmente relevante salientar que a incerteza nos dados comunicados sobre o gás (dados incomparáveis sobre a procura vs. a oferta) ronda os 0,7%. Em conclusão, uma estimativa de 1% de consumo é compatível com os dados estatísticos de Portugal continental. Isto traduzir-se-ia diretamente num PEF histórico de 1,01,

No entanto, prevê-se que a composição do gás na rede nacional de gás mude, através da mistura com gás natural, aumentando as quotas de hidrogénio renovável, biometano e metano RFNBO. Portanto, os PEFs prospetivos para gás de rede devem compor as perdas de 1% com os PEFs dos componentes da mistura.

Para a Madeira, não são declaradas fugas de gás natural no Balanço Energético Regional. No entanto, importa referir que o gás natural é transportado para a Madeira, primeiro por camião da refinaria de Sines para o porto de Lisboa, depois enviado para a Madeira, com distâncias de cerca de 1000 km. Mais uma vez, uma estimativa de 1% de consumo de energia para o manuseamento de gás natural parece razoável.

4.8. Perdas no transporte e armazenamento de eletricidade

Embora os PEF históricos para a eletricidade da rede pública possam ser calculados diretamente a partir do rácio entre a soma da produção interna primária mais as importações líquidas e a procura final de energia, para os PEF prospetivos é necessária uma estimativa das perdas. Um exame dos últimos Balanços Energéticos Nacionais aponta para cerca de 11% de perdas no transporte de eletricidade, mais 2% de perdas no armazenamento hidroelétrico (sistemas hídricos reversíveis) e outros 2% relacionados com o autoconsumo das centrais, ou seja, 15% no total. Para a Madeira e Açores, a eletricidade é transmitida em distâncias muito mais curtas do que em Portugal continental, pelo que as perdas de transmissão são menores, cerca de 5% para a Madeira e 3% para os Açores.

É provável que essas perdas percentuais persistam, pois embora o autoconsumo das usinas e as perdas de distribuição tendam a diminuir, as perdas de armazenamento devem aumentar com mais capacidade de armazenamento adicionada ao sistema elétrico e uso mais intenso desse armazenamento.

É possível considerar estimativas mais complexas. Por exemplo, os clientes residenciais de eletricidade ligam-se à rede de distribuição de baixa tensão, enquanto os grandes clientes industriais podem ligar-se diretamente à rede de transporte em alta ou muito alta tensão, evitando assim cerca de 7% de perdas na distribuição. Dados detalhados sobre esta situação são fornecidos pela ERSE (2023). Por conseguinte, seria possível especificar diferentes PEF para diferentes tipos de clientes de eletricidade. Nesta fase, foram consideradas apenas duas classes de clientes, os diretamente ligados às linhas de transporte (clientes MAT/AT), tipicamente instalações industriais, e os restantes, ligados às redes de distribuição (clientes MT/BT). Para o fornecimento de energia dedicado às instalações, por exemplo, para eletrólise, sugere-se a adoção do tipo de cliente MAT/AT.

4.9. Transporte de combustível

A distribuição de combustíveis por estrada envolve um consumo de energia que foi estimado de forma conservadora em 2% do teor energético do combustível transportado, para o continente. Para as ilhas, as distâncias de distribuição são muito menores, mas o transporte marítimo é necessário, por isso, novamente foi adotado um valor de 2%.

4.10. Eletricidade exportada

Um aspeto com consequências importantes para o caso dos edifícios diz respeito à eletricidade exportada por pequenos sistemas de autoconsumo (por exemplo, painéis fotovoltaicos em telhados) e por comunidades de energia. Caso os sistemas sejam exportados para edifícios próximos, as perdas de transmissão podem ser desconsideradas. No caso de os sistemas exportarem a produção excedentária de eletricidade para a rede pública de distribuição de eletricidade, devem ser imputadas as perdas na distribuição. Em qualquer caso, o PEF da eletricidade importada será diferente (maior) do que o PEF da eletricidade exportada.

4.11. Análises de sensibilidade

Foram realizadas numerosas análises de sensibilidade relativas ao impacto nos PEF calculados das alterações nos vários parâmetros do esquema de cálculo. Os impactos das variações de eficiências e perdas

restringiram-se ao intervalo de 0,01 a 0,03. No entanto, nos casos relacionados com a trajetória futura das quotas de energias renováveis, verificaram-se impactos maiores, refletindo-se na primeira casa decimal.

Isso levou a novas explorações. Como os cenários do PNEC ou do RNC dependem do sucesso das políticas e medidas nele contidas, foi explorada a sensibilidade à sua eficácia. Foram exploradas variações de cenário, reduzindo o impacto esperado das medidas de política pública para a eletricidade renovável, o hidrogénio e as misturas de combustíveis, num intervalo de 75% a 95%. Tal refletiu-se apenas na segunda casa decimal dos PEF até 2030 e não teve impactos significativos depois disso. Isto porque até 2030 prevê-se que o sistema energético português já esteja altamente descarbonizado, e depois as trajetórias futuras não se podem espalhar muito se se quiser atingir a neutralidade carbónica até 2050. No entanto, para 2030, de facto, o arredondamento dos valores calculados com e sem plena eficácia da política pode refletir-se na primeira casa decimal (±0,1). Uma vez que esta questão foi considerada pequena, recorreu-se à plena eficácia das políticas, a fim de evitar a introdução de pressupostos *ad hoc*.

5. Conversão de energia e fatores de GEE

A interpolação linear entre os coeficientes comunicados para as datas 2023/2030/2040/2050 foi considerada adequada.

5.1. Valores caloríficos mais baixos das misturas de combustíveis

Para as misturas de combustíveis, o Quadro 7 apresenta o PCI calculado pela DGEG para 2023 e os resultantes da consideração dos cenários energéticos para datas posteriores.

Table 7. Valores caloríficos mais baixos das misturas de combustíveis

Vetor de		PC			Unidadas
energia	2023	2023 2030 2040		2050	Unidades
Gás de rede	37 966	37 034	35 943	34 535	kJ/Nm³
Gasóleo rodoviário	42 677	42 350	41 806	40 718	kJ/kg
Gasolina de estrada	43 494	42 370	40 496	36 749	kJ/kg
Diesel marítimo	42 566	42 370	40 496	36 749	kJ/kg
Combustível para aviação	43 000	43 018	42 563	41 700	kJ/kg
RSU	7 955	7 955	7 955	7 955	kJ/kg

5.2. Energia primária e fatores de emissão de GEE

Os fatores de energia primária e os fatores de emissão de GEE calculados para Portugal são a seguir indicados de acordo com as formas recomendadas pela EN 17423:2020.

Refira-se que o cenário CN50 prevê o fim da refinação de petróleo bruto em Portugal alguns anos após 2040 (as refinarias poderão continuar a refinar biocombustíveis e a produzir RFNBO), o que justifica algumas alterações bruscas de trajetórias dos combustíveis à base de petróleo perto desta data.

Tendo em conta as incertezas nos cenários, e mesmo nos dados históricos, parece adequado expressar os fatores de energia primária e os fatores de emissão de GEE apenas à primeira casa decimal. Isto também está alinhado com a prática da ISO 52000-1 e da própria EED, e também simplifica os cálculos no âmbito da EPBD.

5.3. Calor

Reference document									
Trajectories of Primary Energy Factors and GHG Emission Factors for Portugal, DGEG, 2025.									
Energy carrier: heat	f _{P;nren}	$f_{ m P;ren}$	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]					
Ambient energy (aero, hydro, geo)	0,0	1,0	1,0	0					
Solar heat	0,0	1,0	1,0	0					
Geothermal waters	0,0	1,0	1,0	0					

Choices related to the perimeter of the assessment										
Geographical area:		Portugal								
Geographical perimeter		European	Χ	National		Regional		Local		Other

Choices related to calculation convention									
Period considered: 2023 to 2050									
Time resolution			Hourly		Monthly	Х	Annual		Other
Data source			Real historic		Simulated		Forward	Y	Other
					historic		looking	^	Otilei
Net or gross calorific valu	е	Χ	Net (LHV)		Gross (HHV)				

Choices related to data									
Available energy sources	x	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts	Other		
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Х	CO ₂ equivalent 100 years	Other		
Conventions energy conversion	Х	Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} =1)		Technical efficiencies	Physical energy content		
Conventions PEF exported energies	х	Resources used to produce		Resources avoided		Other			

Cho	Choices related to assessment methods										
Energy exchanges		Ignoring exchanges	Х	Net exchanges	Gross exchanges	Other					
Multisource generation		Average calcul	latio	n approach	Other						
Mulai		Power bonus		Power loss simple	Powerloss	Power loss ref					
Multi-energy output system		Carnot	Х	Alternate product	Residual heat	Other					
Life cycle analysis (LCA)	Χ	No LCA		Full LCA	Other						

Observações:

A energia ambiente é a energia transferida do ambiente pelas bombas de calor.

No calor solar, esteja-se ciente de que os sistemas solares térmicos requerem sempre armazenamento e um sistema auxiliar. Geotérmica refere-se a nascentes de água quente de ocorrência natural; o consumo de em bombagem, etc., não é contabilizado.

5.4. Eletricidade

	Reference doc	ument		
Trajectories of Energy Conversion and GHG En	nission Factors for Po	ortugal, DGEG, 2025.		
Energy carrier: electricity	f _{P;nren}	f _{P;ren}	$f_{P;tot}$	K _{CO2} [kgCO2eq/ MWh]
(Imported from abroad)	0,2	0,8	1,0	0
Renewable - H2 fuel cells	0,0	1,8	1,8	0
Renewable - Wind, Hydro, PV, Oceanic	0,0	1,0	1,0	0
Renewable - Concentrated Solar Thermal	0,0	1,0	1,0	0
Renewable - Geothermal (Azores)	0,0	10,6	10,6	0
Renewable - Biomass	0,0	3,6	3,6	122
Renewable - Wastes	0,0	5,0	5,0	171
Non-renewable - Wastes	5,0	0,0	5,0	550
Fossil - Natural gas	0,0	1,9	1,9	382
Fossil - Fueloil (Madeira)	2,4	0,0	2,4	710
Fossil - Fueloil (Azores)	2,4	0,0	2,4	710
Fossil - Gasoil (Azores)	2,7	0,0	2,7	738

Choices related to the perimeter of the assessment										
Geographical area:	Portugal									
Geographical perimeter	European	Х	National		Regional		Local		Other	

	Choices related to calculation convention										
Period considered:	2023 to 2050)									
Time resolution			Hourly		Monthly	Х	Annual	Other			
Data source			Real historic	Х	Simulated historic	ΙX	Forward looking	Other			
Net or gross calorific valu	е	Χ	Net (LHV)		Gross (HHV)			·			

		Choices related	d to	data			
Available energy sources	x	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts	Other
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Х	CO ₂ equivalent 100 years	Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	Х	Technical efficiencies	Physical energy content
Conventions PEF exported energies	х	Resources used to produce		Resources avoided		Other	

Cho	Choices related to assessment methods										
Energy exchanges		Ignoring exchanges	Х	Net exchanges		Gross exchanges	Other				
Multisource generation		Average calculation approach				Other					
Multi-proved output quotore		Power bonus		Power loss simple		Power loss	Power loss ref				
Multi-energy output system		Carnot		Alternate product		Residual heat	Other				
Life cycle analysis (LCA)	Χ	No LCA		Full LCA		Other	•				

5.5. Eletricidade da rede

		Reference doc	ument		
Trajectories of Energy Conversion a	nd GHG Em	nission Factors for Por	tugal, DGEG, 2025.		
Energy carrier: electricity		f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]
	2023	0,6	0,8	1,4	138
Public network - MV/LV clients	2030	0,2	1,0	1,2	55
	2040	0,0	1,1	1,1	9
	2050	0,0	1,1	1,1	5
	2023	0,5	0,8	1,3	129
Public network - VHV/HV clients	2030	0,2	1,0	1,2	52
Fublic network - VHV/HV clients	2040	0,0	1,1	1,1	8
	2050	0,0	1,1	1,1	5
Renewable - Exported by prosum	ers	0,0	1,1	1,1	0

Choices related to the perimeter of the assessment										
Geographical area:	Mainland Po	Mainland Portugal								
Geographical perimeter	perimeter European National X Regional Local Other									

Choices related to calculation convention										
Period considered:	2023 to 20	50								
Time resolution			Hourly		Monthly	Х	Annual		Other	
Data source			Real historic	Х	Simulated historic	ΙX	Forward looking	C	Other	
Net or gross calorific value		Χ	Net (LHV)		Gross (HHV)					

		Choices related	l to d	data			
Available energy sources	х	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts	Other
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Х	CO ₂ equivalent 100 years	Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	х	Technical efficiencies	Physical energy content
Conventions PEF exported energies	х	Resources used to produce		Resources avoided		Other	

	Choices	related to asses	sme	ent methods			-	
Energy exchanges		lgnoring exchanges	Х	Net exchanges		Gross exchanges	Other	
Multisource generation		Average calculation approach				Other		
Multi-angus authorit auchana		Power bonus		Power loss simple		Power loss	Power loss ref	
Multi-energy output system		Carnot		Alternate product		Residual heat	Other	
Life cycle analysis (LCA)	Х	No LCA		Full LCA		Other	-	

Notas: A eletricidade fornecida aos clientes VHV/VH não sofre perdas diistribution; A eletricidade exportada pelos produtores-consumidores não sofre perdas de transporte e armazenamento.

	Reference document											
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.												
Energy carrier: electricity		f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]							
	2023	1,0	0,7	1,7	256							
Public network	2030	0,9	0,8	1,7	215							
Fublic lietwork	2040	0,5	0,9	1,3	117							
	2050	0,1	1,0	1,1	25							
Renewable - Exported by p	rosumers	0,0	1,0	1,0	0							

Choices related to the perimeter of the assessment								
Geographical area:	Azores							
Geographical perimeter	European	National	X Re	egional	Local		Other	

Choices related to calculation convention									
Period considered: 2023 to 2050									
Time resolution			Hourly		Monthly	Х	Annual	Other	
Data source			Real historic	Х	Simulated historic	ΙX	Forward looking	Other	
Net or gross calorific value		Χ	Net (LHV)		Gross (HHV)				

		Choices related	to data
Available energy sources	x	Include all energy sources	Exclude self- consumption on-site generation Exclude dedicated delivery contracts Other
GHG considered		CO ₂ only	CO ₂ equivalent X CO ₂ equivalent 100 years Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)	Direct equivalent (f _{P;nren} = 1) Technical efficiencies Physical energy content
Conventions PEF exported energies	x	Resources used to produce	Resources avoided Other

Cho	Choices related to assessment methods									
Energy exchanges		Ignoring exchanges	х	Net exchanges		Gross exchanges	Other			
Multisource generation		Average calculation approach				Other				
M. It		Power bonus		Power loss simple		Power loss	Power loss ref			
Multi-energy output system		Carnot		Alternate product		Residual heat	Other			
Life cycle analysis (LCA)	Χ	No LCA		Full LCA		Other				

	Reference document									
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.										
Energy carrier: electricity		f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]					
	2023	1,7	0,3	2,0	429					
Public network	2030	1,1	0,6	1,7	287					
Fublichetwork	2040	0,7	0,7	1,4	9					
	2050	0,3	0,9	1,2	5					
Renewable - Exported by p	rosumers	0,0	1,1	1,1	0					

Choices related to the perimeter of the assessment										
Geographical area:	Madeira									
Geographical perimeter	European	National	Х	Regional		Local		Other		

Choices related to calculation convention									
Period considered: 2023 to 2050									
Time resolution			Hourly		Monthly	Х	Annual	Other	
Data source			Real historic	Х	Simulated historic	Х	Forward looking	Other	
Net or gross calorific value		Χ	Net (LHV)		Gross (HHV)				

		Choices related	to data
Available energy sources	x	Include all energy sources	Exclude self- consumption on-site generation Exclude dedicated delivery contracts Other
GHG considered		CO ₂ only	CO ₂ equivalent X CO ₂ equivalent 100 years Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)	Direct equivalent (f _{P;nren} = 1) Technical efficiencies Physical energy content
Conventions PEF exported energies	x	Resources used to produce	Resources avoided Other

Cho	Choices related to assessment methods									
Energy exchanges		Ignoring exchanges	Х	Net exchanges		Gross exchanges	Other			
Multisource generation		Average calculation approach				Other				
M. Iti		Power bonus		Power loss simple		Power loss	Power loss ref			
Multi-energy output system		Carnot		Alternate product	Residual heat		Other			
Life cycle analysis (LCA)	Χ	No LCA		Full LCA		Other				

5.6. Combustíveis sólidos

	Reference do	cument								
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.										
Energy carrier	f _{P;nren}	$f_{ m P;ren}$	$f_{ m P;tot}$	K _{CO2} [kgCO2eq/ MWh]						
Wood and forest wastes	0,0	1,0	1,0	33						
Pellets and briquettes	0,0	1,1	1,1	33						
Vegetable coal	0,0	1,1	1,1	19						
Biowastes	0,0	1,0	1,0	33						
Non-renewable wastes	1,0	0,0	1,0	436						

Choices related to the perimeter of the assessment									
Geographical area:	Portugal								
Geographical perimeter	European	X National	Regional	Local	Other				

Choices related to calculation convention										
Period considered:	2023 to 205	0								
Time resolution			Hourly		Monthly	Х	Annual	Other		
Data source			Real historic	Х	Simulated historic	Х	Forward looking	Other		
Net or gross calorific value	Э	Χ	Net (LHV)		Gross (HHV)					

Choices related to data										
Available energy sources	x	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts	Other			
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	X	CO ₂ equivalent 100 years	Other			
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	Х	Technical efficiencies	Physical energy content			
Conventions PEF exported energies	x	Resources used to produce		Resources avoided		Other				

Choices related to assessment methods										
Energy exchanges		Ignoring exchanges	Х	Net exchanges		Gross exchanges	Other			
Multisource generation		Average calculation approach				Other				
Multi-energy output system		Power bonus		Power loss simple		Powerloss	Power loss ref			
		Carnot		Alternate product		Residualheat	Other			
Life cycle analysis (LCA)	Х	No LCA		Full LCA		Other	·			

5.7. Resíduos sólidos urbanos

	Reference document											
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.												
Energy carrier		$f_{ m P;nren}$	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]							
	2023	0,5	0,5	1,0	235							
Municipal solid wastes	2030	0,6	0,4	1,0	275							
Fidilioipat solid wastes	2040	0,7	0,3	1,0	315							
	2050	0,8	0,2	1,0	356							

	Choices related to the perimeter of the assessment											
Geographical area:	Portugal											
Geographical perimeter	European	Х	National		Regional		Local		Other			

	Choices related to calculation convention												
Period considered:	2023 to 205	0											
Time resolution			Hourly		Monthly	Х	Annual	Other					
Data source			Real historic	Х	Simulated historic	Х	Forward looking	Other					
Net or gross calorific valu	Э	Χ	Net (LHV)		Gross (HHV)			,					

		Choices relate	d to	data				
Available energy sources	х	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts		Other
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Χ	CO ₂ equivalent 100 years		Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	Х	Technical efficiencies	Х	Physical energy content
Conventions PEF exported energies	х	Resources used to produce		Resources avoided		Other		

Ch	Choices related to assessment methods											
Energy exchanges		Ignoring exchanges	Х	Net exchanges		Gross exchanges	Other					
Multisource generation		Average calculation approach				Other						
M. Ibi		Power bonus		Power loss simple		Power loss	Power loss ref					
Multi-energy output system		Carnot		Alternate product		Residual heat	Other					
Life cycle analysis (LCA)	Х	No LCA		Full LCA		Other						

Nota: À medida que a reciclagem de bio-resíduos domésticos aumenta, os restantes resíduos não separados tornam-se mais não renováveis.

5.8. Combustíveis líquidos importados

	Reference do	cument										
Trajectories of Energy Conversion and GHG	Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.											
Energy carrier: imported	f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]								
Gasoil	1,0	0,0	1,0	291								
Gasoline	1,0	0,0	1,0	262								
Heating oil	1,0	0,0	1,0	284								
Jets	1,0	0,0	1,0	250								
Marine diesel	1,0	0,0	1,0	284								
Marine fueloil	1,0	0,0	1,0	281								
Other oil-based fuels	1,0	0,0	1,0	273								
Biofuels	0,0	1,0	1,0	2								
Synthetic fuels (RFNBO)	0,0	1,4	1,4	2								

	Choices related to the perimeter of the assessment											
Geographical area:		Portugal										
Geographical perimeter		European	Χ	National		Regional		Local		Other		

	Choices related to calculation convention												
Period considered:	2023 to 205	0											
Time resolution			Hourly		Monthly	Х	Annual	Other					
Data source			Real historic	Х	Simulated historic	ΙX	Forward looking	Other					
Net or gross calorific value	Э	Χ	Net (LHV)		Gross (HHV)								

	Choices related to data												
Available energy sources	X	Include all energy sources	Exclude self- consumption on-site generation Exclude dedicated delivery contracts Other										
GHG considered		CO ₂ only	CO ₂ equivalent X CO ₂ equivalent Other										
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)	Direct equivalent (f _{P;nren} = 1) Technical efficiencies Physical energy content										
Conventions PEF exported energies	x	Resources used to produce	Resources avoided Other										

Ch	Choices related to assessment methods											
Energy exchanges		Ignoring	Х	Net		Gross	Other					
		exchanges		exchanges		exchanges						
Multisource generation		Average calculation approach				Other						
		Power bonus		Power loss		Dawarlasa	Power loss					
Multi anarovavautaut avatam		Power bonus		simple		Powerloss	ref					
Multi-energy output system				Alternate		Residual heat	Other					
		Carnot		product		Residuatrieat	Other					
Life cycle analysis (LCA)	Х	No LCA		Full LCA		Other						

Nota: Portugal importa e exporta simultaneamente vários tipos de combustíveis refinados, daí a necessidade deste quadro.

5.9. Combustíveis líquidos produzidos internamente

	Reference do	cument									
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.											
Energy carrier: domestic production	f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]							
Gasoil	1,1	0,0	1,1	291							
Gasoline	1,1	0,0	1,1	262							
Heating oil	1,1	0,0	1,1	284							
Jets	1,1	0,0	1,1	250							
Marine diesel	1,1	0,0	1,1	284							
Marine fueloil	1,1	0,0	1,1	281							
Other oil-based fuels	1,1	0,0	1,1	273							
Biofuels	0,0	1,1	1,1	2							
Synthetic fuels (RFNBO)	0,0	3,9	3,9	2							

	Choices related to the perimeter of the assessment											
Geographical area: Portugal												
Geographical perimeter		European	Χ	National		Regional		Local		Other		

Choices related to calculation convention									
Period considered: 2023 to 2050									
Time resolution		Hourly		Monthly	Х	Annual		Other	
Data source			Real historic	Х	Simulated historic	Х	Forward looking		Other
Net or gross calorific valu	е	Χ	Net (LHV)		Gross (HHV)				

		Choices related	d to	data			
Available energy sources	x	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts	Other
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Х	CO ₂ equivalent 100 years	Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	х	Technical efficiencies	Physical energy content
Conventions PEF exported energies	Х	Resources used to produce		Resources avoided		Other	·

Ch	Choices related to assessment methods									
Energy exchanges		Ignoring	X	Net		Gross	Other			
Lifetgy exchanges		exchanges	_^	exchanges		exchanges	Other			
Multisource generation		Average calcu	latio	n approach		Other				
	Dowerbonus		Power loss		Powerloss	Power loss				
Multi anaray autaut ayatan		Power bonus		simple		FOWEI (055	ref			
Multi-energy output system		0		Alternate		Residual heat	Other			
		Carnot		product		nesidualifeat	Other			
Life cycle analysis (LCA)	Х	No LCA		Full LCA		Other	-			

5.10. Gasóleo rodoviário (mistura de combustíveisl)

		Reference do	ocument								
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.											
Energy carrier		f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]						
	2023	0,9	0,1	1,1	253						
Pood gosoil	2030	0,9	0,2	1,1	248						
Road gasoil	2040	0,6	0,4	1,1	175						
	2050	0,1	1,0	1,1	31						

Choices related to the perimeter of the assessment										
Geographical area: Portugal										
Geographical perimeter	neter European X National Regional Local Other									

Choices related to calculation convention									
Period considered: 2023 to 2050									
Time resolution Hourly Monthly X Annual Other						er			
Data source			Real historic	Х	Simulated historic	х	Forward looking	Oth	er
Net or gross calorific valu	e	Χ	Net (LHV)		Gross (HHV)				

		Choices relate	ed t	o data				
Available energy sources	X	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts		Other
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Х	CO ₂ equivalent 100 years		Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	Х	Technical efficiencies	Х	Physical energy content
Conventions PEF exported energies	Χ	Resources used to produce		Resources avoided		Other		

	Choice	es related to ass	ess	ment methods		
Energy exchanges		Ignoring exchanges	Х	Net exchanges	Gross exchanges	Other
Multisource generation		Average calcu	latio	n approach	Other	
Multi-energy output system		Power bonus		Power loss simple	Power loss	Power loss ref
		Carnot		Alternate product	Residual heat	Other
Life cycle analysis (LCA)	Х	No LCA		Full LCA	Other	

Nota: As metas de quota renovável podem ser parcialmente alcançadas através de certificados, no entanto, o quadro foi construído tendo em conta os montantes reais de incorporação física (mesma nota para as restantes misturas de combustíveis).

5.11. Gasolina de estrada (mistura de combustíveis)

		Reference de	ocument								
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.											
Energy carrier		f _{P;nren}	$f_{ m P;ren}$	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]						
	2023	1,0	0,1	1,1	244						
Pood gosolino	2030	0,9	0,2	1,1	223						
Road gasoline	2040	0,6	0,4	1,1	158						
	2050	0,1	1,0	1,1	28						

Choices related to the perimeter of the assessment										
Geographical area: Portugal										
Geographical perimeter European X National Regional Local Other										

Choices related to calculation convention								
Period considered: 2023 to 2050								
Time resolution Hourly Monthly X Annual Other						Other		
Data source			Real historic	ΙX	Simulated historic	ΙX	Forward looking	Other
Net or gross calorific valu	ie	Χ	Net (LHV)		Gross (HHV)			

		Choices relat	ed t	o data				
Available energy sources	х	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts		Other
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Х	CO ₂ equivalent 100 years		Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	Х	Technical efficiencies	Х	Physical energy content
Conventions PEF exported energies	х	Resources used to produce		Resources avoided		Other		

Choices related to assessment methods										
Energy exchanges		Ignoring exchanges	Х	Net exchanges		Gross exchanges	Other			
Multisource generation		Average calculation approach				Other				
M. Iki an and a shout a shout		Power bonus		Power loss simple		Power loss	Power loss ref			
Multi-energy output system		Carnot		Alternate product		Residual heat	Other			
Life cycle analysis (LCA)	Х	No LCA		Full LCA		Other	•			

5.12. Diesel marinho (mistura de combustíveis)

		Reference d	ocument								
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.											
Energy carrier		f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]						
	2023	1,0	0,1	1,1	244						
Marine diesel	2030	0,9	0,2	1,1	223						
Marine dieset	2040	0,6	0,5	1,1	145						
	2050	0,3	0,8	1,1	80						

Choices related to the perimeter of the assessment											
Geographical area:	Portugal										
Geographical perimeter European X National Regional Local Other											

	Choices related to calculation convention										
Period considered: 2023 to 2050											
Time resolution	esolution				Monthly	Х	Annual	Other			
Data source			Real historic	Х	Simulated historic	ΙX	Forward looking	Other			
Net or gross calorific v	alue	Χ	Net (LHV)		Gross (HHV)						

		Choices relat	ted t	to data				
Available energy sources	X	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts		Other
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Х	CO ₂ equivalent 100 years		Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	Х	Technical efficiencies	Х	Physical energy content
Conventions PEF exported energies	х	Resources used to produce		Resources avoided		Other		

C	Choices related to assessment methods											
Energy exchanges		Ignoring exchanges	Х	Net exchanges		Gross exchanges	Other					
Multisource generation		Average calculation approach				Other						
Multi-amount courts in the contains		Power bonus		Power loss simple		Power loss	Power loss ref					
Multi-energy output system		Carnot		Alternate product		Residual heat	Other					
Life cycle analysis (LCA)	Х	No LCA		Full LCA		Other	-					

5.13. Jatos (mistura de combustíveis)

	Reference document											
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.												
Energy carrier		f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]							
	2023	1,1	0,0	1,1	250							
Jets	2030	1,0	0,1	1,1	235							
Jeta	2040	0,6	1,2	1,8	138							
	2050	0,2	2,5	2,7	52							

Choices related to the perimeter of the assessment										
Geographical area:	Portug	al								
Geographical perimeter	Europea	an X	National		Regional		Local		Other	

Choices related to calculation convention										
Period considered: 2023 to 2050										
Time resolution			Hourly		Monthly	Х	Annual	Other		
Data source			Real historic	Х	Simulated historic	Х	Forward looking	Other		
Net or gross calorific valu	е	Χ	Net (LHV)		Gross (HHV)					

		Choices relate	l to data	
Available energy sources	x	Include all energy sources	Exclude self- consumption on-site generation Exclude dedicated delivery contracts Other	
GHG considered		CO ₂ only	CO ₂ equivalent X CO ₂ equivalent 100 years Other	
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)	Direct equivalent (f _{P,nren} = 1) Technical efficiencies X Physica energy content	
Conventions PEF exported energies	х	Resources used to produce	Resources avoided Other	

C	hoic	es related to ass	ess	ment methods				
Energy exchanges	Ignoring	Х	Net		Gross	Other		
Lifetgy exchanges		exchanges	^	exchanges		exchanges	Other	
Multisource generation		Average calcu	Average calculation approach					
		Power bonus		Power loss		Power loss	Power loss	
Multi-operatioutput avetem				simple		Fower toss	ref	
Multi-energy output system		Cornet		Alternate		Residual heat	Other	
		Carnot		product		Residuatifeat	Other	
Life cycle analysis (LCA)	Х	No LCA		Full LCA		Other		

5.14. Combustíveis gasosos

	Reference do	cument		
Trajectories of Energy Conversion and GHG	Emission Factors for	Portugal, DGEG, 202	5.	
Energy carrier	f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]
Natural gas (fossil)	1,0	0,0	1,0	203
LPG (fossil)	1,0	0,0	1,0	255
Hydrogen (renewable)	0,0	1,4	1,4	0
Ammonia (renewable)	0,0	1,7	1,7	0
Biogas	0,0	1,0	1,0	1
Methane: cleaned biogas	0,0	1,1	1,1	1
Methane: methanation of biogas CO ₂	0,0	1,2	1,2	1
Methane: methanation of captured CO ₂	0,0	2,3	2,3	1

Choices related to the perimeter of the assessment											
Geographical area: Portugal											
Geographical perimeter European X National Regional Local Other											

	Choices related to calculation convention											
Period considered: 2023 to 2050												
Time resolution			Hourly		Monthly	Х	Annual	Othe	r			
Data source		Real historic	Х	Simulated historic	Х	Forward looking	Othe	r				
Net or gross calorific value	9	Χ	Net (LHV)		Gross (HHV)							

		Choices relate	d to	data			
Available energy sources	x	Include all energy sources		Exclude self- consumption on-site generation		Exclude dedicated delivery contracts	Other
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Χ	CO ₂ equivalent 100 years	Other
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	X	Technical efficiencies	Physical energy content
Conventions PEF exported energies	Х	Resources used to produce		Resources avoided		Other	

Ch	Choices related to assessment methods											
Energy exchanges		Ignoring exchanges	Х	Net exchanges		Gross exchanges	Other					
Multisource generation		Average calcu	latio	n approach		Other						
Multi-paper output auctors		Power bonus		Power loss simple		Power loss	Power loss ref					
Multi-energy output system		Carnot		Alternate product		Residual heat	Other					
Life cycle analysis (LCA)	Χ	No LCA		Full LCA		Other	-					

5.15. Gás da rede pública (mistura de combustíveis)

	Reference document												
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.													
Energy carrier $f_{P;nren}$ $f_{P;ren}$ $f_{P;tot}$ $K_{[kgCO2]}$													
	2023	1,0	0,0	1,0	203								
Public network gas	2030	0,9	0,1	1,0	186								
r ublic lietwork gas	2040	0,7	0,6	1,3	132								
	2050	0,0	2,1	2,1	1								

Choices related to the perimeter of the assessment											
Geographical area: Portugal											
Geographical perimeter European X National Regional Local Other											

Choices related to calculation convention											
Period considered: 2023 to 2050											
Time resolution Hourly Monthly X Annual Other							Other				
Data source			Real historic	Х	Simulated historic	Х	Forward looking		Other		
Net or gross calorific valu	e	Χ	Net (LHV)		Gross (HHV)						

	Choices related to data												
Available energy sources	х	Include all energy sources	Exclude self- consumption on-site generation Exclude dedicated delivery contracts Other										
GHG considered		CO ₂ only	$\begin{array}{c cccc} CO_2 \ equivalent \\ 20 \ years \end{array} X \begin{array}{c cccc} CO_2 \ equivalent \\ 100 \ years \end{array} Other$										
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)	Direct equivalent (f _{P,nren} = 1) Technical efficiencies X Physic energ conte	y									
Conventions PEF exported energies	Х	Resources used to produce	Resources avoided Other										

CI	Choices related to assessment methods											
Energy exchanges		Ignoring	х	Net	Gross		Other					
Energy exertanges		exchanges		exchanges		exchanges	Other					
Multisource generation		Average calculation approach				Other						
		Power bonus		Power loss		Power loss	Power loss					
Multi-operationate autout overtens		Power bonus		simple		Power loss	ref					
Multi-energy output system		Carnot		Alternate		Residual heat	Other					
		Carriot		product		nesidudi liedi	Other					
Life cycle analysis (LCA)	Х	No LCA		Full LCA		Other						

Nota: A rede pública contém inicialmente apenas gás natural, mas depois recebe quantidades crescentes de hidrogénio (renovável), biometano e metano RFNBO.

5.16. Cogeração (produção de calor e eletricidade)

		Reference do	cument								
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.											
Energy carrier: electricity / hea	at	f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]						
CHP electricity - Biogas		0,0	2,9	2,9	2						
CHP electricity - Biomass, liqu	0,0	3,4	3,4	1							
CHP electricity - Biomass, soli	0,0	3,6	3,6	1							
CHP electricity - Natural gas		1,9	0,0	1,9	191						
CHP electricity - Liquid fossil f	uels	3,6	0,0	3,6	455						
CHP electricity - Non renewab	le wastes	3,6	0,0	3,6	779						
CHP electricity - Fuel cells		0,0	1,8	1,8	0						
	2023	1,9	0,0	1,9	191						
CUP algertricity Oxid res		1,6	0,3	2,0	162						
CHP electricity - Grid gas	2040	1,0	1,7	2,7	96						
	2050			3,7	10						

Choices related to the perimeter of the assessment											
Geographical area: Portugal											
Geographical perimeter European X National Regional Local Other											

Choices related to calculation convention										
Period considered: 2023 to 2050										
Time resolution			Hourly		Monthly	Х	Annual	Other		
Data source			Real historic	х	Simulated historic	х	Forward looking	Other		
Net or gross calorific value	Χ	Net (LHV)		Gross (HHV)						

Choices related to data								
Available energy sources	х	Include all energy sources		Exclude self-consumption on-site generation		Exclude dedicated delivery contracts	Other	
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Х	CO ₂ equivalent 100 years	Other	
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	х	Technical efficiencies	Physical energy content	
Conventions PEF exported energies	x	Resources used to produce		Resources avoided		Other		

Choices related to assessment methods									
Energy exchanges		Ignoring exchanges	х	Net exchanges		Gross exchanges	Other		
Multisource generation		Average calculation approach				Other			
Multi-energy output system		Power bonus		Power loss simple		Power loss	Power loss ref		
		Carnot	х	Alternate product		Residual heat	Other		
Life cycle analysis (LCA)	Χ	No LCA		Full LCA		Other			

	Reference document									
Trajectories of Energy Conversion and GHG Emission Factors for Portugal, DGEG, 2025.										
Energy carrier: electricity / h	eat	f _{P;nren}	f _{P;ren}	f _{P;tot}	K _{CO2} [kgCO2eq/ MWh]					
CHP heat - Biogas		0,0	1,3	1,3	1					
CHP heat - Biomass, liquid fuels		0,0	1,3	1,3	0					
CHP heat - Biomass, solid fuels		0,0	1,2	1,2	0					
CHP heat - Natural gas		1,1	0,0	1,1	107					
CHP heat - Liquid fossil fuels	CHP heat - Liquid fossil fuels		0,0	1,2	145					
CHP heat - Non renewable w	astes	1,5	0,0	1,5	312					
CHP heat - Fuel cells		0,0	1,7	1,7	0					
	2023	1,1	0,0	1,1	107					
CHR hoot Crid goo	2030	0,9	0,2	1,1	91					
CHP heat - Grid gas	2040	0,5	1,0	1,5	53					
	2050	0,05	2,01	2,06	6					

Choices related to the perimeter of the assessment										
Geographical area:	Portugal									
Geographical perimeter	European	X National	Regional	Local	Other					

Choices related to calculation convention									
Period considered:	2023 to 2050								
Time resolution	Hourly				Monthly	Х	Annual	Other	
Data source			Real historic	х	Simulated historic	Χ	Forward looking	Other	
Net or gross calorific value	9	Х	Net (LHV)		Gross (HHV)				

Choices related to data									
Available energy sources	х	Include all energy sources		Exclude self-consumption on-site generation		Exclude dedicated delivery contracts	Other		
GHG considered		CO ₂ only		CO ₂ equivalent 20 years	Χ	CO ₂ equivalent 100 years	Other		
Conventions energy conversion		Zero equivalent (f _{P;nren} = 0)		Direct equivalent (f _{P;nren} = 1)	X	Technical efficiencies	Physical energy content		
Conventions PEF exported energies	Х	Resources used to produce		Resources avoided		Other			

Choices related to assessment methods								
Energy exchanges		Ignoring exchanges	Х	Net exchanges	Gross exchanges	Other		
Multisource generation		Average calculation approach			Other			
Multi-energy output system		Power bonus		Power loss simple	Power loss	Power loss ref		
		Carnot	х	Alternate product	Residual heat	Other		
Life cycle analysis (LCA)	Χ	No LCA		Full LCA	Other			

6. Conclusões

Foi montado um esquema computacional detalhado para poder caloríficos inferior, fatores de energia primária, e fatores de intensidade de emissão de GEE, adequado para os fins das Diretivas EED e EPBD. São analisadas as tecnologias e cadeias de valor energético mais relevantes que estão presentes no panorama do setor energético português, bem como as previstas nos documentos estratégicos como o PNEC e o roteiro da neutralidade carbónica até 2050. Os resultados são comunicados em formulários com o formato EN 17423:2020, conforme exigido pela EED. Os fatores de energia primária são fornecidos com duas casas decimais, mas recomenda-se a utilização de apenas uma, devido à incerteza e sensibilidade aos pressupostos.

A Figura 3 apresenta uma comparação dos fatores de energia primária obtidos para diversos combustíveis. É evidente que a maioria dos valores se situa entre 1,1 e 1,2, com exceção do hidrogénio (renovável) e dos combustíveis sintéticos derivados (RFNBO), como o metano (várias vias), e especialmente o amoníaco, o metanol e o combustível de aviação.

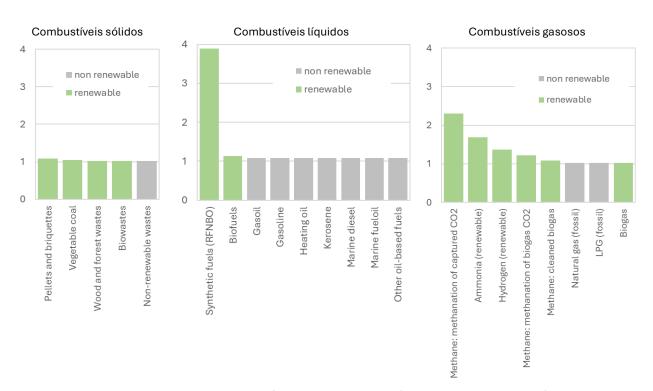


Figure 3. Comparação dos fatores de energia primária para diversos combustíveis

Esta análise refere-se aos combustíveis produzidos internamente. Para as versões importadas correspondentes, os fatores de energia primária estão mais próximos de 1,02, uma vez que a energia necessária para a sua extração e processamento é considerada fora do âmbito de aplicação.

Em relação à produção de eletricidade no local, a Figura 4 mostra os resultados obtidos. Refletem principalmente diferentes eficiências de conversão de energia. É por esta razão, por exemplo, que os fatores primários para a incineração de resíduos ou biomassa são maiores do que para os combustíveis fósseis líquidos ou gasosos. A eletricidade renovável proveniente de fontes solares, eólicas, hídricas ou oceânicas tem 100% de eficiência convencional e, portanto, apresenta os fatores de energia primária mais baixos, próximos de 1. Poder-se-ia pensar que a energia geotérmica teria também um fator de energia primária muito baixo, no entanto neste caso a conversão deve ser feita a partir de calor geotérmico como energia primária, e com uma eficiência inferior a 10%, o que explica o fator de energia primária muito elevado, quase 11.

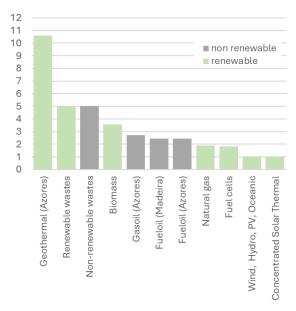


Figure 4. Fator de energia primária para diversas tecnologias de produção de eletricidade no local e fontes de energia.

Esta apreciação deve ser combinada com os correspondentes fatores de emissão de GEE, representados na Figura 5, e isso, naturalmente, mostra a vantagem da adoção de tecnologias de energia renovável.

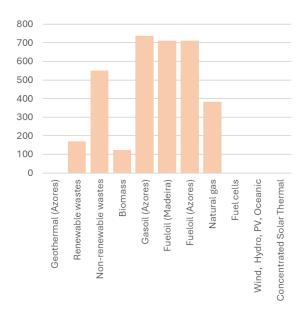


Figure 5. Fator de intensidade de GEE para diversas tecnologias de produção de eletricidade no local e fontes de energia (kg CO2eq/MWh de energia final)

Embora as análises anteriores se refiram a tecnologias/fontes de energia individuais, há casos mistos a considerar. Isso inclui misturas de combustíveis, como gasóleo rodoviário, gasolina rodoviária, diesel marítimo e combustível de aviação, com propriedades em evolução ao longo do tempo. Especialmente importante é a energia final fornecida pelas redes públicas de eletricidade e gás, como ilustrado nas Figuras 6 e 7. As respetivas estratégias de descarbonização conduzem a resultados bastante diferentes. Enquanto para a eletricidade pública o fator de energia primária diminui até 2040 e depois estabiliza num nível próximo de 1,1, para o gás público, o fator de energia primária aumenta acentuadamente após 2030, refletindo o elevado fator de energia primária do hidrogénio e do metano sintético.

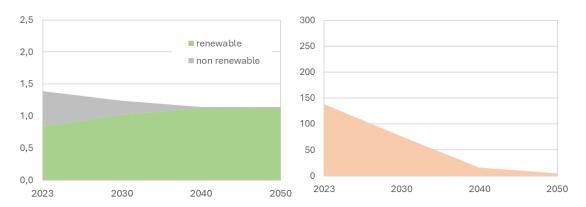


Figure 6. Evolução da Energia Primária e dos fatores de intensidade de GEE para a eletricidade da rede pública (continente)

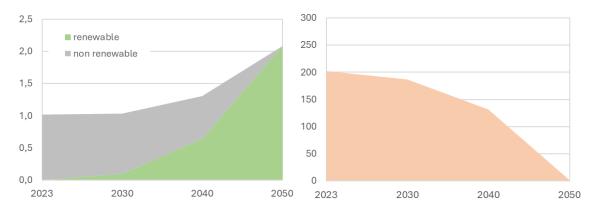


Figure 7. Evolução da energia primária e dos fatores de intensidade de GEE para a mistura de gases da rede pública

De um modo geral, os resultados obtidos parecem expressar uma aparente tensão entre os objetivos de descarbonização e o princípio da «eficiência em primeiro lugar». Abordar utilizações de energia difíceis de reduzir (principalmente na indústria, nos transportes marítimos e aéreos) através da utilização de hidrogénio renovável e de combustíveis sintéticos derivados beneficia de emissões de gases com efeito de estufa muito baixas ou nulas, mas implica grandes fatores de energia primária. Note-se que, no âmbito da EPBD, um dos principais critérios de desempenho dos edifícios é um indicador de energia primária; assim, mais uma vez, a utilização destes combustíveis é desfavorável, embora permita uma descarbonização profunda.

No entanto, o que estas situações realmente significam é que é preferível utilizar diretamente eletricidade em vez de utilizar combustíveis – o que, de facto, está de acordo com o princípio da «eficiência em primeiro lugar». É claro que aspetos técnicos e econômicos ainda podem aconselhar o uso de combustíveis RFNBO.

De qualquer forma, os resultados deste estudo apoiam uma escolha de Portugal de implementar obrigações de poupança de energia EED em termos de energia final, em vez de em termos de energia primária, dada a sua estratégia de descarbonização.

Referências

- APA (2025). Fator de Emissão da Eletricidade 2024. Ed. Agência Portuguesa do Ambiente, Amadora, março de 2024.
- Balaras, C.A., Dascalaki, E.G., Psarra, I., Cholewa, T. (2023). Primary Energy Factors for Electricity Production in Europe. Energies 2023, 16, 93. https://doi.org/10.3390/en16010093
- CA-EPBD (2017). Primary Energy Factors and Members States Energy Regulations. CA-EPBD Factsheet.
- COM (2008). Regulation (EC) No 1099/2008 of the European Parliament and of the Council of of 22 October 2008 on energy statistics.
- COM (2023). Support to Primary Energy Factors Review (PEF). Final Report. C. Amann, P. Torres, G. Boldizsár, G. Hofer, W. Stumpf, K. Leutgöb and L. van Nuffel. Eds. E7 and Trinomics for Directorate-General for Energy, 2023. https://op.europa.eu/en/publication-detail/-/publication/de7457ee-722f-11ee-9220-01aa75ed71a1
- DESNZ (2023). Fuel factors within the Home Energy Model: FHS assessment. A technical explanation of the methodology. Department for Energy Security & Net Zero of the United Kingdom. https://assets.publishing.service.gov.uk/media/65785c4b254aaa0010050b35/hemfhs-tp-05-fhs-fuel-factors.pdf
- DGEG (2025). CN50 scenario 2024 update. Carbon Neutrality in the Portuguese Energy Sector by 2050. DEIR Studies on the Portuguese Energy System 008. Directorate-General for Energy and Geology, Divison of Research and Renewables, Lisbon, Portugal. February 2025. https://www.dgeg.gov.pt/pt/areas-transversais/investigacao-e-inovacao/publicacoes-relatorios-estudos/cenario-energetico-cn50-update-2024/
- DGEG (2025). Dados estatísticos sobre Energia, Direção-Geral de Energia e Geologia, https://www.dgeg.gov.pt/pt/estatistica/energia/
- EAE (2022). Estratégia Açoriana para a Energia 2030 (EAE 2030), Direção Regional de Energia, Governo Regional dos Açores. http://eae2030.azores.gov.pt
- EED (2023). Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on energy efficiency and amending Regulation (EU) 2023/955 (recast)
- EPBD (2024). Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the energy performance of buildings (recast)
- ERSE (2023). Caracterização da procura de energia elétrica em 2024. Entidade reguladora dos Serviços Energéticos. https://www.erse.pt/media/vkzlbmt4/caracterização-procura-se-2024-dez2023.pdf
- EUROSTAT (2019). Energy balance guide Methodology guide for the construction of energy balances & Operational guide for the energy balance builder tool, Eurostat, 31 January 2019. https://ec.europa.eu/eurostat/documents/38154/4956218/ENERGY-BALANCE-GUIDE.pdf/de76d0d2-8b17-b47c-f6f5-415bd09b7750?t=1632139948586

- Garraín, D. et al. (2010). Renewable Diesel Fuel from Processing of Vegetable Oil in Hydrotreatment Units: Theoretical Compliance with European Directive 2009/28/EC and Ongoing Projects in Spain. Smart Grid and Renewable Energy, 2010, 1, pp. 70-73. doi:10.4236/sgre.2010.12011
- Gonçalves, M. (2019). Primary Energy Factors and Specific Emissions for the Portuguese Network.

 University of Coimbra, Faculty of Sciences and Technology, Department of Electrical and Computer Engineering, Coimbra. 66 pp.

 https://estudogeral.uc.pt/bitstream/10316/88043/1/Dissertação_Maurício
 Gonçalves_2011168259.pdf
- IPCC (2021). IPCC Sixth Assessment Report, Chapter 7. Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054. doi: 10.1017/9781009157896.009..
- ISO (2017). International Standard ISO 52000-1:2017 Energy performance of buildings Overarching EPB assessment.
- JRC (2014). Well-to-Wheels analysis of future automotive fuels and powertrains in the European context. Well-to-Tank (WTT) Report, Version 4a, January 2014. JRC Technical Reports. Joint Research Centre, Institute for Energy and Transport. https://publications.jrc.ec.europa.eu/repository/bitstream/
- JRC85326/wtt_report_v4a_april2014_pubsy.pdf
- JRC (2017). Solid and gaseous bioenergy pathways: input values and GHG emissions. Calculated according to the methodology set in COM(2016) 767. Version 2. JRC Science for Policy Report, Joint Research Centre, 226 pp. https://publications.jrc.ec.europa.eu/repository/handle/JRC104759
- PAESC (2022). Plano de Ação para a Energia Sustentável e Clima da Região Autónoma da Madeira (PAESC 2022-2050). Resolução do Conselho do Governo Regional n.º 1271/2022 de 9 de dezembro, Governo Regional da Madeira.
- PNEC (2024). Plano Nacional Energia e Clima 2021-2030 (PNEC), Resolução de Conselho de Ministros 149/2024 de 30 de outubro.
- REHVA (2024). Primary energy and operational CO2 indicators calculation in revised EPBD.

 Federation of European Heating, Ventilation and Air Conditioning Associations, Technical Guidance for EPBD Implementation Task Force, March 18th, 2024.

 https://www.rehva.eu/fileadmin/user_upload/2024/EPBD_Guidance_2024.pdf

- RITE (2014). Factores de emisón de CO2 y Coeficientes de paso a energía primaria de diferentes fuentes de energía final consumidas en el sector de edificios en España. Ministerio de Industria, Energía y Turismo, 31 pp.

 https://www.miteco.gob.es/content/dam/miteco/es/energia/files-1/Eficiencia/RITE/documentosreconocidosrite/Otros%20documentos/Factores_emision_CO2.pdf
- RNC (2019). Carbon Neutrality Roadmap Long Term Strategy for Carbon Neutrality of the Portuguese Economy by 2050. https://descarbonizar2050.pt/en/; and Ministerial Resolution no. 107/2019, from July 1, Official Journal of the Portuguese Republic,
- RNCA (2024). Roteiro para a Neutralidade Carbónica dos Açores (RNCA), Secretaria Regional do Ambiente e Ação Climática, Governo Regional dos Açores
- SEAI (2024). Conversion and emission factors for publication. Sustainable Energy Authority of Ireland. Excel Workbook, v 1.3.
- https://www.seai.ie/data-and-insights/seai-statistics/conversion-factors
- Valdenaire, D., A. Tehrani, and S, Mennecier (2022). Estimating the CO2 intensities of EU refinery products: Statistical Regression Methodology. CONCAWE Report 15/22, Brussels. https://www.concawe.eu/wp-content/uploads/Rpt_22-15.pdf
- Vivadinar, A., and W. Purwanto (2020). Techno-Enviro-Economic Study of Hydrogenated Vegetable Oil Production from Crude Palm Oil and Renewable Hydrogen. International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2020. IOP Conf. Series: Materials Science and Engineering 1143 (2021) 012045, IOP Publishing. doi:10.1088/1757-899X/1143/1/012045