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Abstract 

The operation of a future highly decarbonised (95% CO2 emissions reduction vs 1990) 

power system, as defined with JRC-EU-TIMES in 2050, is analysed with METIS. The 

power system is dimensioned in order to provide adequate electricity to a fleet of 

electrolysers, whose purpose is to produce hydrogen at quantities adequate to supply 

industrial processes and transport. The analysed power system deviates from current 

practices in that demand takes over the role of power generation in balancing the system 

and setting the wholesale market price. The segment of the market where competitive 

forces set the price shifts from production to demand. Under the assumption of adequate 

competition between the electrolyser operators the resulting prices could, in most EU 

member states, arrive at a sustainable equilibrium. This equilibrium – not present in all 

member states – depends on the ratio between flexible load (electrolyser capacity) and 

variable renewable generation. 



 

2 

Foreword 

The efforts to mitigate risks stemming from climate change are gradually intensifying, 

with Europe leading the way. According to the European Commission’s recently published 

strategic long-term vision for a climate-neutral economy by 2050, the current policies 

and actions are projected to achieve reductions of greenhouse gas emissions of around -

45% by 2030 and around -60% by 2050. 

Achieving the long-term temperature goals set in the Paris Agreement would require 

additional effort. The road to a net-zero greenhouse gas economy may be paved on 

several building blocks stretching to all sectors of the economy. The contribution from the 

power sector can be significant through maximal deployment of renewables and the use 

of electricity as the main element to fully decarbonise Europe’s energy supply. 
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Executive summary 

The present work explores the potential role of electrolysers in a future largely 

decarbonised power system and uncovers the reasons why this technology may be an 

important building block towards the transition to a stable, sustainable and fully 

renewable power system.  

The JRC-EU-TIMES was used as the starting point to evaluate Power-to-X technologies, 

given the potential to cover the entire energy system. The scenario selected for analysis 

with METIS is one where Carbon Capture and Storage (CCS) is not widely adopted, or 

accepted and electrolysis is the main process for producing hydrogen.  

This incarnation of a future European power system in 2050 is designed to produce 

carbon-free fuels and feedstock for the industry, while maximising the deployment of 

renewable energy power generation. This scenario would require a nearly tenfold 

increase of installed capacity of solar and wind power generation in 2050 compared to 

the EUCO30 scenario for 2030 as electricity is the primary source for producing 

hydrogen. The key new component of the examined energy system is the reversible 

electrolyser. 

The introduction of hydrogen as a new energy carrier would unlock new possibilities for 

cross-sectoral system integration and eventually, enable the gradual replacement of 

conventional thermal generators in their function of ancillary services and capacity 

providers with electrolysers. 

Initially, electrolysers will operate on excess power from variable renewable generation. 

Later, as soon as Power-to-X (P2X) is more widely adopted as a process for generating 

synthetic liquid fuels, electrolysers will develop a critical capacity that will enable this 

technology to become price-setters. Electrolyser demand will constitute such a significant 

fraction of the total load that their role could expand to functions currently performed by 

conventional centrally dispatched power generation. 

Although the primary function of the electrolysers is to supply hydrogen to the 

downstream sectors, they are also expected to be able to perform two additional and 

perhaps even more important functions: 

 To contribute significantly to the technical stability of the power system and 

 To restore a price (in the sense that during times of surplus they can set a price 

higher than zero) to the power market dominated by prime movers with close to 

zero variable cost. 

By simulating the above functions, perhaps surprisingly, we arrive to the conclusion that 

the operation of the future decarbonised power system (and market) may be 

conceptually much closer to current power system than one would expect. The main 

market actors can still operate in an environment where supply and demand define the 

wholesale price of electricity, while competition among them can still serve the interests 

of consumers and producers alike. 

However, due to the intrinsic characteristics of the two main technologies, (renewable 

generation is variable and electrolysers are dispatchable load) a switch of roles will take 

place: In contrast to current practice, the demand side (primarily the electrolysers) will 

be providing energy and the essential services for balancing the power system, while the 

production side (mostly renewables) will represents the inelastic part of the equation, 

reminiscing more the characteristics of demand in the current power system. 

Some quantitative results of the present analysis are summarised below: 

 Due to the periods with low electricity prices, a bidding price of 60 €/MWh from 

the electrolyser translates into an average price of 27-35 €/MWh for the electricity 

paid for most countries. 

 This translates into a hydrogen production cost of approximately 3€/Kg. 
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 Operating hours for the electrolyser are between 2 000 and 7 500 hours. 

Countries with more than 4 500 hours had the following conditions:  

1. Total electricity production was at least 2.5 times the net electricity 

demand (meaning at least 60% of the electricity demand was from the 

electrolysers);  

2. Wind was the dominant VRE technology with at least a 2.5 wind to solar 

production ratio;  

3. The electrolyser is sized between 16 and 24% of the VRE installed 

capacity. 

The electrolyser operation and the VRE operation has such a catalytic effect on the power 

market operation that generation and demand in 2050 switch roles and mirror today's 

participants as shown in the figure below. 

Today                                                  2050 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

The METIS model is used to analyse a potential evolution of the European energy system 

in 2050 where electricity is the primary source for producing synthetic fuels. The scenario 

favouring electrolyser deployment was selected in order to analyse the technical and 

economic viability of such a deployment, given the very important challenges posed by 

VRE integration at levels beyond 50%. 

The analysis demonstrates that electrolysers may be considered one more key 

component towards the transition to an almost fully renewable power system which is 

stable and very close to being sustainable. 

It further demonstrates that the electrolysers required for producing the volumes of 

hydrogen required by the downstream sectors can play two (potentially three) additional 

and perhaps even more important functions:  

 They can play a role in maintaining the technical stability of the power system and 

 They can restore a price to the power market dominated by prime movers with 

close to zero variable cost. 

 They could eventually completely substitute legacy gas fired units by reversing 

into production mode (fuel cells). 

Therefore the electrolyser, as a centrally dispatched variable load unit, can be 

the vehicle to restore, balance not only to the power system, but also to the 

day-ahead market. 

Load 

- Inflexible 

- Is forecasted with error 

- Price taker 

- Sets price when curtailed 
(VOLL)  

Generation 

- Inflexible 

- Is forecasted with error 

- Price taker 

- Sets price when curtailed 

(Zero €/MWh)  

 

Generation 

- Flexible 

- Provides balancing and 

reserves 

- Marginal unit sets price  

Load (Electrolysers) 

- Flexible 

- Provides balancing and 

reserves 

- Marginal unit sets price  
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Moreover, the analysed scenario has very good chances of achieving sustainability: In 

most countries hydrogen production with electrolysis has the potential to be competitive 

compared to the main alternative technology (SMR with CCS/U). 

At the same time all three Variable Renewable Energy generating technologies could, in 

most countries, recover all or most of the capital investment cost from the day-ahead 

power market. Two discount rates were used to assess the CAPEX recovery: The lower 

value (5%), is closer to a social discount rate used for assessing public infrastructure 

projects and a higher (9%) is closer to values used for assessing commercial 

investments. The economic performance of all three technologies (offshore and onshore 

wind and solar) comfortably exceeds the lower discount rate in most countries but only 

onshore wind shows potential for higher project economic performance. 
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1 Introduction 

The decarbonisation of the electricity sector is fundamental to reach a low carbon energy 

system. Wind and Solar power generation technologies are main elements on the path to 

this goal (referred henceforth as VRE for Variable Renewable Energy). Their short term 

variability can be compensated by batteries, while Power to X (P2X) can act as potential 

seasonal storage. P2X implies the production of hydrogen from electrolysis and potential 

conversion downstream to synthetic fuels as final energy carriers. The main advantages 

of the technology can be summed up in the following: (1) it can exploit the use of 

existing infrastructure for transporting and storing hydrogen and synthetic fuels; (2) it 

can provide an energy vector with the potential to decarbonize other sectors; (3) it 

supplies hydrogen that can be used in combination with CO2 from biogenic sources (or 

even air) to produce synthetic fuels and feedstock for chemical industry. The high cost of 

electrolysers (currently at 1000-1500 €/kW1) is the main barrier to overcome. 

The present study soft-links two models to assess the potential effect Power to Gas (PtG) 

can have in a future (2050) energy system. One model is an energy model (called JRC-

EU-TIMES [1–3]). Its main advantages are: (1) it makes trade-offs among flexibility 

options (where PtG is in direct competition with storage, Power to Liquid (PtL), power to 

heat and demand side management); (2) it calculates prices endogenously based on 

supply and demand curves; (3) capacity expansion is considered, leading to the optimal 

PtG capacity being an output of the model. The other is a power model (called METIS) 

which is able to determine the optimal operation of the installed capacities. The main gap 

from JRC-EU-TIMES that METIS covers is the temporal resolution (hourly for METIS vs. 

24 time slices for TIMES), which is important to capture VRE fluctuations and potential 

hours with surplus. The main gap JRC-EU-TIMES covers is the link with the rest of the 

energy system, potential downstream use of hydrogen and effect of its price. 

Previous work [4,5] on P2X with JRC-EU-TIMES, analysed over 120 scenarios to tackle 

the uncertainty on the potential evolution of the energy system. This report focuses on 

one potential future where Carbon Capture and Storage (CCS) is not widely accepted or 

adopted. In the particular scenario hydrogen plays a key role (to still reach the CO2 

reduction target of 80-95% vs. 1990 by 2050) and a significant (~1000 GW) capacity of 

electrolysers is required. 

The current analysis aims to provide answers to following questions regarding the 

functioning of the power system described previously: 

 What would the power market look like, in comparison to today and what could 

the possible roles of the main participants be? Could the current market 

arrangements still be relevant?  

 How would the electrolyser fleet participate in the power market and what would 

its impact be on the operation of the electricity system (i.e. electricity prices and 

effect on surplus)?  

 To what extent could demand substitute conventional power generation in 

providing balancing services and in setting the day-ahead market price?  

 What would be the operating profile of the electrolysers? 

 Would the resulting electricity market price adequately support the renewable 

generation investments? 

 At the same time would the electricity price allow hydrogen production at a 

competitive cost with respect to the current alternative technology?  

                                           
1 FCH-JU, Development of Water Electrolysis in the European Union, February 2014, 

http://www.fch.europa.eu/node/783 
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2 Methodology 

The present analysis aims to provide insight into the workings of a power system well 

ahead into the future. This analysis is performed in two steps. In the first step the future 

energy system is defined by means of a long term energy model called JRC-EU-TIMES 

(See Annex 1 for a description). The optimal energy system defined in step 1 is used as 

input in a power system model in order to study to a much higher detail the operation 

and performance of the various components of this new power system.   

2.1 2050 scenario by JRC-EU-TIMES 

The starting point to evaluate Power-to-X technologies was JRC-EU-TIMES, given it's 

potential to cover the entire energy system, to choose inherently among the most 

suitable energy carriers for satisfying a service (e.g. electricity or gas for heating), to 

calculate endogenously commodity prices within a multi-annual capacity expansion 

optimisation process (previous studies [6–8] that look only at the operational 

component). 

The model was used to evaluate the role of Power-to-Methane [4], Power-to-Hydrogen 

and Power-to-Liquid [5], where the potential for the latter two is the highest mainly for 

transport (hydrogen for heavy-duty trucks and electro-fuels [9] for aviation and marine 

transport) and industry (steel). Electrification (demand over 5000 TWh for some 

scenarios), energy efficiency (30-40% reduction in residential and transport) and CO2 

storage preferred over CO2 use were among the most notorious trends. 

2.1.1 Competing technologies for H2 production  

Over 100 scenarios were created following a parametric analysis. In total over 20 

parameters were varied to analyse their influence on hydrogen and downstream use. The 

parameters found to be most influential are underground CO2 storage, biomass, VRE 

potential and technology performance (i.e. electrolyser and downstream liquid 

production). The fewer technology options the system has to reach the desired target, 

the higher the CO2 price is and more hydrogen is needed.  

In scenarios where CO2 storage is considered possible, the main technology (>95%) 

used is steam reforming with CCS, thereby limiting the requirement for electrolysers 

(~80 GW). On the other hand, in scenarios where CCS is not widely adopted or accepted, 

electrolysis is the predominant technology and the system requires more hydrogen, due 

to the additional constraints. This results in significant electrolyser capacities (~1000 

GW). 

2.1.2 A power system based on electrolysers  

To put this in perspective, current global capacity of electrolysers is around 8 GW [10].  

If we assume this is distributed by regions proportional to hydrogen demand (EU demand 

is 7 out of 50 mtpa globally), EU should have close to 1 GW of installed capacity. On the 

one hand, to reach 80 GW of an unrestricted scenario (95% CO2 reduction) implies an 

annual growth of almost 15 % a year, which is similar to the growth that wind has 

experienced in the 2007-2017 period (18 % a year [11,12]). On the other hand, a 

capacity of 1000 GW requires a 24 % growth per year, which is still less than the 32 % 

observed for PV in the 2012-2017 period [11,12]. Attaining this level of sustained growth 

for the entire period until 2050 would require significant investments in electrolyser 

manufacturing capability in Europe. The feasibility of realizing this cost-effectively and in 

a timely fashion, as well as the policies and incentives necessary to make it happen are 

outside the scope of the present report. 

In this study, the scenario of electrification of the entire hydrogen production in Europe is 

analysed in order to understand the impact on the electricity system. The main 

assumptions for this scenario can be found in Annex 1. 
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2.2 The 2050 power system into METIS 

Output from JRC-EU-TIMES was used as input for METIS (scenario dependent) and 

underlying assumptions have been aligned between both tools (scenario independent, 

e.g. fuel prices). An overview of these parameters is provided in Table 1. Limited 

feedback from METIS to JRC-EU-TIMES has been done. 

Table 1. Parameters taken from JRC-EU-TIMES used to modify input to METIS. 

Parameter Level of detail Scenario 

dependent 

Notes 

Installed 

generating 

capacity 

By country, by 

technology 

y Some technologies (e.g. CHP, 

geothermal, tidal) were not 

available in METIS and aggregated 

in a similar category 

Load By country, peak 

and average 

y Demand was available by sector, 

but the version of METIS2 used did 

not include sectoral demand 

profiles. Therefore, total demand 

time series were used. 

CO2 price One for the 

entire system 

y This is the marginal and not the 

average price 

Fuel prices Oil, gas, coal by 

country 

n Aligned with reference scenario 

2016 [21] 

Techno-

economic data 

for generators 

By technology n Cost (CAPEX, OPEX) and efficiency 

for different types of generator 

The analysis of the power system with METIS was conducted at an hourly resolution, 

which meant that the following additional input not available in JRC-EU-TIMES, was 

required:  

 Hourly load profile (by country) 

 Hourly capacity factors for wind and solar (by country) 

 Hydrological data for pumped hydro storage 

 Reserves 

Time series data from METIS EUCO30 2050 were used since this was identified as the 

closest scenario to the ones modelled. METIS demand time series were rescaled to match 

JRC-EU-TIMES annual demand, while the hourly profiles from METIS were used to update 

JRC-EU-TIMES  annual capacity factors, and ensure consistency between both tools 

(since this affects potential electricity surplus and levelised cost of electricity). 

                                           
2 METIS v1.3 
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3 The 2050 renewable-based power system 

The scenario chosen represents a favourable case for hydrogen in 2050 and hence is 

appropriate for studying the electrolyser role in balancing the power system. 

3.1 Installed capacities 

The figure below provides the total installed capacity of generating and consumption 

assets (electrolysers) in 2050, compared to current and expected installed capacity in 

2030 according to a central policy scenario3. More than 1000GW of electrolysers are 

required to produce the volumes of hydrogen needed to supply a decarbonised (primarily 

steel) industry, and processes to produce synthetic fuel volumes for aviation, shipping 

and long-haul road transport. 

Figure 1. Installed capacities pf generation and consumption assets in 3 time frames             
(2018 – 2030 – 2050) 

 

Source: JRC, ENTSO-E, METIS EUCO30 2030. 

The necessary solar and wind generation capacity figures are 5 to 10 times higher 

compared to the central policy projections for 2030 (EUCO30). Existing studies on the 

total renewable generation potential in Europe provide evidence supporting the technical 

feasibility of the level of capacity increase considered for wind [28]. (See Annex 2 for a 

comparison of the renewable installed capacities with the respective potentials). 

                                           
3 The EUCO30 scenario has been developed to reach all the 2030 targets agreed by the October 2014 European 

Council (at least 40% reduction in greenhouse gas emissions with respect to 1990, 27% share of RES in final 
energy consumption and 30% reduction in the primary energy consumption) and the 2050 decarbonisation 
objectives, continuing and intensifying the current policy mix. The 'EUCO' scenario has been developed by 
ICCS-E3MLab with the PRIMES energy system model. 
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3.1.1 Thermal capacity vs reversible electrolysers 

It is surprising at first that the installed capacity of thermal power plants is somewhat 

above current levels (400 GW). Approximately half (190GW) are peaking plants (open 

cycle gas turbines), 80 GW are coal fired power plants fitted with CCS/U, while the rest 

are combined cycle gas turbines. The latter two are based on the JRC-EU-TIMES results. 

However, the peaking plant capacity (OCGTs) is the result of the calibration of the METIS 

scenario during initial runs of the model in order to reduce the occurrence of any loss of 

load below 3 hours/year. 

The gas-fired power plants in the system would be the legacy power plants installed 

during the transition period. They could eventually be entirely replaced if one third of the 

installed capacity of the electrolysers is reversible. 

3.2 Interconnections 

The interconnection capacity between EU-28 member-states and Switzerland and Norway 

was based to a large extent to the results stemming from the e-Highway 2050 project4 

that studied 100% RES scenarios with high share of wind and solar. The figure below 

provides the most important interconnection capacity upgrades between neighbouring 

member states until 2050. Detailed information on the interconnection capacity values is 

provided in Annex 3. 

Figure 2. Interconnection capacity increase between EU-28 member states (2020 – 2050) 

 

3.3 Demand 

Demand time series were generated by scaling of the existing demand time series of the 

METIS EUCO30 2050 scenario in order to match the annual total demand calculated by 

JRC-EU-TIMES.  

A flat demand profile dimensioned according to the electrolyser installed capacity was 

then added to the resulting time series. The potential consumption of the electrolysers 

impacts significantly on demand. A mid-merit electrolyser operation of 4000 hours would 

double the electricity demand in most member states (see Figure 3 below). 

                                           
4 http://www.e-highway2050.eu/results/ 
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Figure 3. Firm (other than electrolyser) vs potential electrolyser demand 

 

*assuming an average operation of 4000 hours of the electrolysers.  

3.3.1 Modelling the electrolysers 

The electrolyser demand load-following ability was modelled as an equivalent generating 

unit with a variable cost equal to the maximum acceptable power or Willingness to Pay 

(WTP) price by the electrolyser operator. The WTP was set at 60€/MWh. This value is 

based on the reasoning presented in the following paragraph. Electrolyser fleets across 

the EU were modelled with the same WTP price and hence identical bidding behaviour. 

It was also assumed that hydrogen production has access to a large-scale storage 

(otherwise the electricity consumption would have to follow the hydrogen demand). 

3.3.2 Discussion on deriving the willingness to pay (WTP) price 

The competing technology for hydrogen production is the basis to estimate the electricity 

price below which electrolysis is competitive. This is assumed to be steam methane 

reforming (SMR) with CCS. This technology still has some CO2 emissions (90% capture 

assumed), but the main cost contributor is the gas used as feed. The assumed gas price 

is 8.7 €/GJ, corresponding to the import price for 2050 in the 2DS (2 ºC) scenario from 

IEA ETP [13]. Given the low carbon nature of the future scenario, a CO2 price of 200 

€/tonne is used. This can be seen as high compared the current (February 2019) EU ETS 

CO2 price, which is close to 20 €/tonne. However, it is much lower than marginal prices 

seen with JRC-EU-TIMES, that are 300 €/tonne of CO2 for the most flexible scenarios and 

can be as high as 1000 €/tonne for the most restricted [4]. This is also in line with 

estimates with PRIMES that range between 230 and 310 €/tonne [14] or prices above 

1000 €/tonne that have been observed in studies looking at hydrogen penetration in 

energy system models at a global level [15]. These assumptions give a hydrogen 

production cost of almost 3.5 €/kgH2. 

The hydrogen production cost through electrolysis will directly depend on the operating 

hours that affect the CAPEX contribution to total cost. Since the hours are not known ex-

ante, an average of 4000 hours was used (also using as indication the output from JRC-

EU-TIMES). The future (2050) CAPEX for the electrolyser is highly uncertain (400 – 1000 

€/kW [5,16]). A specific CAPEX of 400 €/kW was used5, in line with the large (1000 GW) 

capacity deployed in this scenario and assessments that estimate that the CAPEX for the 

PEM electrolyser could be as low as 290 €/kW in high hydrogen deployment scenarios 

                                           
5 The lower value was chosen considering the potential economies of scale under the massive scale up of 

electrolyser installations considered in the present scenario.  
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[17].The influence of the different parameters on hydrogen production cost is shown in 

Figure 4. 

Figure 46. Hydrogen production cost for steam methane reforming and electrolysis as a function of 

electricity and gas prices 

 

An alternative approach for the WTP for electricity could be to estimate this value, based 

on the WTP for the hydrogen by the different sectors either as fuel or feedstock (see 

Figure 5), which can be as high as 7-8 €/kg in the case of transport [19].  

Figure 5. Hydrogen production cost vs WTP from various sectors (from [18]) 

 

                                           
6 Discount rate: 7%; lifetime: 30 years; efficiency (LHV): 70.9% [27], hydrogen storage of 8 hours (480 €/kg), 

25% installation factor; SMR Capex: 580 €/kW (including CCS) 
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This demand driven approach would probably favour the case for hydrogen, however, at 

present the uncertainty regarding the evolution of hydrogen distribution costs and 

competing technologies to satisfy those same end services (both pathway dependent) is 

considerable. Since the present analysis with METIS focuses on the power sector, (see 

Figure 6) it was decided to use the competing technology approach, as more 

conservative and involving less exogenous assumptions. 

Figure 6. Hydrogen pathways in comparison to METIS scope 

 

From the point of view of the electrolyser, the WTP will be as low as possible, in order to 

have the lowest production cost. However, lower WTP also translates into lower average 

electricity prices, which decreases the average revenues of the renewable generators 

thereby making them unprofitable. At the same time, given that the average electricity 

paid by the electrolyser is lower than the maximum WTP, the final electricity costs are 

lower, due the fact that the electrolysers will only operate when the day-ahead price is 

lower than the WTP. 

Following the above discussion the WTP value of 60 €/MWh was adopted as a 

conservative and balanced first estimate.  

3.4 Summary 

The 2050 power system specified in the present analysis is essentially an evolution of the 

current power system where derivatives of existing VRE technologies (Wind and Solar) 

dominate the energy mix. Three quarters of the annual power generation are provided by 

these technologies. Enabling this level of VRE penetration into the power system would 

require addressing challenges stemming from the stochastic generating patterns of these 

technologies. One further complication stems from the fact, that the variable production 

cost is almost zero. Inevitably the following questions would need to be addressed: 

1. How will the power system be balanced? 

2. What will the day-ahead market price look like? 

3. How will power generators recover their investment costs? 

The following sections attempt to provide some insight on the above questions by 

modelling the electrolysers as another asset participating in a competitive power market. 
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4 Modelling results 

The operation of the power system described in the previous section was simulated with 

METIS, by performing an optimal dispatch of the power system at hourly resolution for 

one year. 

4.1 The fuel mix 

The figure below provides the share of electricity generated by each category of 

generating technologies, across the modelled area. Wind and solar dominate, providing 

around three quarters of the total generation. Nuclear and hydro contribute together a 

further 15%, while the role of thermal power plants and storage is limited to providing 

energy and reserves at times of scarcity.    

Figure 7. Contribution of each technology category to the total electricity generation  

 

4.2 Renewables production and curtailment 

The T95_2050 scenario is a power system dominated by renewables and in particular 

VREs. The figure below provides the annual production for each member state from 

renewable generation per source, stacked. The solid line provides the total demand in 

each member state, also used in Figure 3. The production surplus is evident, but not 

uniform among the member states. The surplus is higher in countries where the climatic 

conditions favour the development of VRE generation. This surplus is a major part of the 

energy feeding the electrolysers. 
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Figure 8. Stacked renewable annual production vs firm electricity demand7 at country level  

 

A power system based on VREs (75% of the annual generation) would expose these 

technologies to significant levels of curtailment if the necessary infrastructure, capable of 

absorbing the excess power, were not present. In the T95_2050 scenario the installed 

electrolyser capacity can provide the ramp-down reserve capability to minimise 

curtailment of variable renewable generation. The figure below provides the calculated 

curtailment as a percentage of the total available potential.  

Figure 9. Curtailed production as % of total generation potential from variable generation 

 

The observed higher curtailment of generation from wind is partially explained by the fact 

that generation from wind is curtailed before solar and run of river with the default model 

parameters8. 

                                           
7 In this case excluding demand from the electrolyser fleet 
8 Wind generation is modelled as generating at a variable cost slightly above zero €/MWh  
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4.3 Electrolyser operation 

The equivalent full operating hours (EFOH) for all the countries are shown in the figure 

below. Although it is not the sole affecting factor, the surplus (observed in Figure 8) is 

related to the EFOH of the electrolyser fleet increase. 

Figure 10. Electrolyser operation (EFOH) 

 

4.4 Marginal electricity prices 

A major challenge posed by increased shares of variable renewable generation is the 

effect on electricity day-ahead market prices. During hours of expected high injections of 

power by wind and solar prices tend to drop to zero. In markets where rules allow it 

negative prices can occur. 

One of the outcomes of the present analysis is that the electrolyser, as a 

centrally dispatched variable load unit, can be the vehicle to, not only restore 

balance to the power system, but also to the day-ahead market. The figure below 

(red line) provides the average marginal price for every country during one year plotted 

against the background of the EFOH provided in Figure 10.  

Figure 11. Average marginal price of electricity 
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The patterns observed in the above figure allude to a market-driven operation of the 

electrolysers. Their operators bid for power at their highest acceptable cost or Willingness 

to Pay (WTP), set at 60 €/MWh. Whenever the marginal price is higher than 60 €/MWh, 

the area is facing scarcity and the electrolysers are not operating. Whenever the 

marginal price is lower than 60 €/MWh, the electrolysers are operating at full load. When 

the electrolysers are operating at part load the marginal price is 60€/MWh (The 

electrolysers are the marginal technology). 

Under the above market arrangement and assumed electrolyser operator bidding 

behaviour, the cost of electricity procured by the electrolysers is always lower than the 

average marginal price. The figure below illustrates that the difference between the two 

widens in countries with low EFOH of the respective electrolyser fleet. 

Figure 12. Average electrolyser power cost 

 

With the exception of two outliers (LU and MT) and the triad IE, NL and the UK which is 

marginally above 40€/MWh, the cost of electricity powering the electrolysers is below 

40€/MWh. By combining the above results and the factors presented in paragraph 3.3.2 

(CAPEX and efficiency), we may derive the resulting average production cost of H2 in 

each country. 

4.5 Production cost of H2 

The average production cost of H2 is, as explained in paragraph 3.3.2, a function of the 
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(Figure 10) and the average electrolyser power cost. Other factors being equal between 

countries (CAPEX and electrolysis efficiency) this cost will vary depending only on the 

variation of the EFOH and the cost of power. The figure below provides this variation 

between countries. 

The results indicate competitiveness of H2 production with electrolysis in countries where 

the EFOH are above 3500 hours. Small deviations from this rule are observed were the 
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Figure 13. Average electrolyser power cost vs alternative technology production costs and EFOH 

 

4.6 Generator income vs Electrolyser cost  

The electrolysers are setting the price in the power day-ahead market during a 

considerable number of hours. For most countries this number of hours ranges between 

2000 and 5000. This restorative effect of electrolysers on the market price directly 

affects the revenues of generators. After establishing in the previous paragraph that the 

electricity price paid by the electrolysers is, with a few exceptions, below the threshold of 

40 €/MWh, and the resulting ex-factory price of hydrogen below 3€/kg, we need to 

ascertain that the other end of the market can recover the investments costs. 

Hydrogen electrolyser operators receive income, through a presumably established 

hydrogen market. Therefore, the hydrogen price sets the willingness to pay for the 

electricity by the operators of the electrolysers, which in turn increases VRE revenues. 

Figure 14. Offshore wind generator income 
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Generator revenues are calculated based on the hourly production and hourly marginal 

prices for each country. A simplified quick assessment of the viability of the offshore wind 

investments can be conducted by comparing the annual income of each VRE technology 

with the respective required annuity calculated for 2 discount rates: a low value at 5% 

and a higher value at 9%. The annuity for each technology is based on CAPEX values of 

1200 €/kW, 2030 €/kW and 400 €/kW for onshore wind, offshore wind and PV 

respectively.  

Similarly the projected annual incomes for onshore wind generating and solar generating 

technologies are provided in the figures below.  

Figure 15. Onshore wind generator income 

 

Figure 16. Solar generator income 
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The system defined with the energy model (JRC-EU-TIMES) presents a significant 

variation in VRE production surplus (available energy over firm demand) among the 

countries. This in turn leads to a significant variation both in the electrolyser operating 

hours and the resulting electricity prices. Therefore there is room for further optimisation 

of the electrolyser and VRE fleets. 

However, under the assumptions of the present analysis, the T95_2050 based power 

system appears potentially sustainable. The results indicate that in most countries 

hydrogen production with electrolysis could be competitive to the main alternative 

technology (SMR with CCS/U). At the same time they indicate that all three VRE 

generation technologies (some better than others) could in most countries, depending on 

the discount rate applied, recover all or most of their investment requirement from the 

day-ahead power market. 

Identifying the reasons for a lower performance in some countries and optimising 

capacities to improve this could be an area of further work.   
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5 Participation of the electrolyser fleet in the power market 

In the preceding paragraphs the operation of a power system based primarily on VRE 

generation was simulated, assuming an optimal dispatch of all generating technologies 

bidding at their variable cost. The VRE generation installed capacity is very high, much 

higher in fact than the level required for supplying the electricity demand. Without the 

electrolysers participating in the market, a significant proportion of time during the year 

(a few thousand hours) a generation surplus would be present, forcing VRE generation 

curtailment. During these hours market prices, assuming they are based on the 

prevailing marginal price, would be zero. 

5.1 Mirroring the current power system to 2050 

The electrolysers are present in the simulated 2050 power system with an installed 

capacity in the order of magnitude of the current thermal generation capacity in Europe. 

Their primary mission is to produce the volumes of H2 necessary to supply the industrial 

demand and to feed the synthetic fuel production processes, by absorbing the excess 

production from VRE generation. However, while doing so, they can also act as balancing 

service providers. This function can be realized if they have the capability to provide 

synchronous reserves by adjusting their consumption in a way similar to the current 

practise of thermal power generators. 

Besides producing the hydrogen feedstock required by other sectors and providing 

balancing and regulation services there is a third, and perhaps more important role, that 

of a price-setter. A simple way to explain this is by mirroring the current energy system. 

VRE generation in 2050 mirrors load in the current power system: It varies with time, in 

a way which is not controllable, but can be predicted with some error, is inflexible, is a 

price taker and, when curtailed, sets the price, albeit at a minimum (zero), instead of a 

maximum (VOLL) set by load curtailment today. 

Figure 17. Generation and demand in 2050 mirroring today's participants 

Today                                                  2050 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, electrolysers in 2050 mirror centrally dispatched power generation units in the 
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5.2 The electrolyser fleet as a price-setter  

It's possible to imagine the electrolyser fleet assuming a price setting role in a 

deregulated competitive power market, where a sufficiently large number of electrolyser 

operators (possibly with small differences in plant efficiency) compete to consume the 

maximum amount of electricity at the lowest possible cost. For each electrolyser operator 

there is a willingness to pay (WTP) price, set by the plant technical and economic 

performance, the downstream contracts / and or the prevailing H2 commodity price 

(assuming there will be a downstream H2 market). The WTP price for the electrolyser 

operators in one country or region will probably be very close to one another, much like 

the variable cost of generation is for current CCGT operators. 

By extending the logic of mirroring today's participants in the power system of 2050, it is 

possible to understand the factors driving the electrolyser operator participation in this 

instance of a future power system (and market). Electrolyser operators competing in a 

power market with a uniform market clearing price would be exposed to very similar 

dilemmas and options, as today's power plant operators. 

Power plant operators today, so long as competition is effective bid at (or close to) their 

marginal production costs. Similarly, if electrolyser operators participate in the day-

ahead market with the same rules as power plants, they would bid for the power they 

will consume at (or close to) their WTP. If they opt to bid at a lower price they risk being 

displaced by a competitor, not accessing the power they need for producing the H2 

volumes to fuel their downstream operations. 

The WTP for each electrolyser operator will probably vary, depending on the market price 

of H2, the stocks, the agreements in place and the efficiency of each installation. The 

individual WTP and capacity value pairs, when known would be used to generate an 

electrolyser priced demand curve. The present analysis and power system simulation is 

considering a flat demand curve, bidding the entire electrolyser capacity in each country 

at the WTP price of 60 €/MWh. 

This assumption may seem simplistic at first, but it may not deviate significantly from 

reality, if competition is fostered between electrolyser operators via proper regulatory 

oversight and system planning.  

5.3 Fostering competition among electrolyser operators    

In the preceding paragraphs the potential role of the electrolyser fleet as a price setter in 

the electricity market was presented, as well as why this appears to be possible in a 

deregulated power market. Contrary to the power markets today, where the supply side 

(generation) is setting the price, in the VRE-based 2050 power market simulated in the 

present report the electrolysers will be the price setters for a significant amount of time. 

This means that the primary concern of ensuring competition in the power market will 

shift from the production side to the demand side, in particular to the electrolyser 

operators. The enhanced oversight could involve new indicators and monitoring. 

New indicators for assessing the reliability and, more importantly, the viability of the 

power system should be devised. One such indicator would be the ratio of VRE installed 

capacity to electrolyser capacity (V/E). Methodologies may be developed for assessing 

the desired level of the V/E ratio, similar to current adequacy assessments. The 

thresholds of this indicator would indicate whether the power system is in need of 

investments in VRE generation or electrolyser capacity. 

Monitoring electrolyser operator bids would build upon the current practice of monitoring 

power plant bids. This task could be carried out by Regulators or Competition Authorities 

with the mandate to intervene and avert collusion. 
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6 Conclusions and possible further work 

The present analysis demonstrated how a power system model may be used to gain 

insight and apply concepts, regarding competition and markets, applicable today to a 

possible future instance of a power system. 

The METIS model was used to analyse a potential future scenario of the European energy 

system in 2050 generated with JRC-EU-TIMES. In this scenario electricity is the primary 

source for producing synthetic fuels, primarily for transport and hydrogen for energy 

intensive industries (Steel). The scenario favours electrolyser deployment and was 

selected in order to analyse the technical and economic viability of such a deployment, 

given the very important challenges posed by VRE integration at levels beyond 50%.  

Thus the electrolyser turned out to be the key component of the envisioned power 

system in 2050. The analysis demonstrated that this component could enable the 

transition to an almost fully renewable power system, which is stable and potentially 

sustainable.  

It further demonstrated that the electrolysers required for producing the volumes of 

hydrogen required by the downstream sectors can play two additional and perhaps even 

more important functions:  

 They can play a role in maintaining the technical stability of the power system and 

 They can restore a price to the power market dominated by prime movers with 

close to zero variable cost. 

 They can eventually completely substitute legacy gas fired units by reversing into 

production mode (fuel cells). 

The above roles may be fulfilled if the following conditions are met:  

 The electrolysers can be operated in a flexible manner without major degradation 

of performance. 

 The electrolysers participate in the power market providing energy and balancing 

services on a competitive basis. 

 Effective market monitoring is in place to avert collusion and to monitor adequacy 

indicators for electrolysers and VRE generation. 

 Approximately one third of the electrolyser capacity is reversible. 

The future power market could be structurally different from the current power market in 

terms of roles. While supply and demand will have to be met at all times, the two roles 

will be switched: In contrast to current practise the demand side (primarily the 

electrolysers) would be providing energy and the essential services for balancing the 

power system, while the production side (mostly renewables) would represent the 

inelastic part of the equation, similar to the role of demand in the present power system. 

6.1 Possible further work 

 Use of the capacity expansion module of METIS to assess the potential for 

optimisation in T95_2050 system. 

 Derive WTP price versus volume curves based on input from the energy model 

and literature. 

 Assessing the optimal V/E capacity ratios for every country. 
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CAPEX Capital expenditure 
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P2X Power to X 

PtG Power to gas 

SMR Steam methane reforming 

V/E Variable renewable energy capacity to electrolyser capacity ratio 

VRE Variable renewable energy 

WTP Willingness to pay 
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Annexes 

Annex 1. A description of the models 

The JRC-EU-TIMES model 

For more detail on the structure and considerations of the model you may refer to 

[4,5,22–26]. 

JRC-EU-TIMES model is a partial equilibrium, linear optimization, bottom-up technology 

model created with the generator from Energy Technology System Analysis Program 

(ETSAP) of the International Energy Agency [1–3]. Its objective is the satisfaction of 

energy services demand while minimizing (via linear programming) the discounted net 

present value (NPV) of energy system costs, subject to several constraints. Energy 

system optimization is different from doing NPV calculations for analysing the business 

case of a certain technology. The most important difference is that in an energy system 

model, prices (e.g. for electricity) are not predefined, but endogenous. 

As a partial equilibrium model, JRC-EU-TIMES does not model the economic interactions 

outside of the energy sector. However, it does capture the most important feedback 

through the use of price elasticities that change the final energy demand of services. This 

is a proxy for converting the cost minimization to economic surplus maximization. 

Moreover, it does not consider in detail demand curves and non-rational aspects that 

condition investment in new and more efficient technologies. 

A key feature of the model is that the end use demand is not defined as power, gas, oil 

demand, but instead the services that are satisfied with those commodities (e.g. number 

of houses, space to be heated, materials, traveling distance) and the energy carrier used 

to satisfy those needs is an endogenous option.  

There are common characteristics and limitations of energy system models, specifically 

with cost optimization. These include in terms of approach: perfect foresight (knowledge 

in the base year of all the future demand and global prices), central optimization (best 

decision across sectors, which in reality include many stakeholders), rational behavior 

(choice for cost optimal alternative without consideration of politics, social acceptance, 

personal interests) and perfect competition (no market distortions). 

 

The METIS model 

For more detail on the structure and considerations of the model you may refer to 

[29][30]. 

The METIS model is a modelling tool that can quickly provide robust insights on complex 

energy related questions, focusing on the short term operation of the energy system and 

markets.  

The power system module used in the present analysis represents the power system by a 

network in which each node stands for a geographical zone that can be linked to other 

zones with power transmissions. Exchanges of energy between nodes are limited by the 

NTC, which is exogenously defined. 

The simulation consists of the optimisation of the operation of the system assets over a 

year, at an hourly time step by minimizing the overall cost of the system to maintain 

supply/demand equilibrium at each node. The optimisation problem is linear and is 

solved using a rolling horizon approach. 

In METIS, units of the same technology or using the same fuel in each zone are bundled 

together into the same asset in a cluster model which simulates the dynamic constraints 

and starting costs in a relaxed (LP) unit commitment, without using binary variables. 
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Assumptions for scenario chosen from JRC-EU-TIMES for this study 

Table 2. Scenario chosen from JRC-EU-TIMES for analysis in METIS. 

Parameter Value Reasoning 

95 % CO2 

reduction 

228 Mton of CO2/year 

for EU28+ by 2050, 

which represents 95% 

CO2 reduction vs. 1990 

It is expected that PtG will play a larger 

role as target becomes stricter since 

there is limited budget for emissions 

from gas 

No underground 

CO2 storage 

Absence of CO2 

underground storage 

(e.g. due to lack of 

social acceptance) 

This has been identified as key option to 

decarbonize the energy system, 

especially sectors other than power. Not 

having CCS will make the need for other 

technologies larger 

High wind and 

solar potential 

Higher PV and wind 

potential (see Appendix 

1) 

Initial estimates are conservative. If 

higher potential is assumed, more VRE 

deployment will lead to more electricity 

surplus to deal with and a larger need 

for flexibility where PtG can play a role 

Best PEM 

(electrolyser) 

performance 

Electrolyser cost of 400 

€/kW and efficiency of 

86% (including heat 

recovery) by 2050 

Technology is its early stages. Learning 

curve is dependent on deployment which 

is in turn uncertain, as well as 

breakthroughs in research 

Limited geothermal 

potential 

Maximum of 300 TWh 

for EU28+ (see Appendix 

1) 

There are optimistic estimates from 

GEOELEC with almost 3000 TWh for EU 

[32], while geothermal contribution to 

power is at most 2-2.5% of generation 

for most of global studies 
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Annex 2. Renewable potentials 

Figure 18. Installed solar power capacity in T95_2050 vs theoretical potential 

 

 

Figure 19. Installed onshore wind power capacity in T95_2050 vs theoretical potential 
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Annex 3. Interconnection capacities 

Interconnection 
2020 2030 2050 

Relative 
increase % 

Increase 
(GW) 

ES-FR 3.81 4.0 14 267% 10.19 

DE-NO 1.43 1.5 9 529% 7.57 

DE-SE 0.57 0.6 8 1304% 7.43 

AT-DE 2.1 7.3 7.5 257% 5.4 

GR-IT 0.5 1.0 6 1200% 5.5 

NL-NO 2 2.1 7 250% 5 

BG-RO 0.57 4.2 4.7 725% 4.13 

GB-NO 1.33 1.4 5 276% 3.67 

AT-IT 0.43 1.5 4 830% 3.57 

DE-FR 3.14 3.3 6.6 110% 3.46 

CH-DE 3.81 7.2 7.2 89% 3.39 

BE-GB 0.95 1.0 4 321% 3.05 

DE-DK 2.38 3.5 5.15 116% 2.77 

BE-NL 2.29 2.4 4.9 114% 2.61 

HR-SI 0.95 2.7 3.5 268% 2.55 

DK-NL 0.67 0.7 3 348% 2.33 

FR-GB 3.62 3.8 5.9 63% 2.28 

ES-PT 2.86 4.0 5 75% 2.14 

DE-PL 1.14 3.2 3.24 184% 2.1 

DE-LU 0.93 1.9 3 223% 2.07 

BG-GR 0.76 0.8 2.8 268% 2.04 

CY-GR 

  
2 inf 2 

HR-HU 0.57 2.55 2.55 347% 1.98 

CH-IT 4.04 4.24 6 49% 1.96 

AT-SI 0.86 1.51 2.7 214% 1.84 

FR-IT 3.57 3.75 5.35 50% 1.78 

HU-RO 1.05 1.1 2.8 167% 1.75 

IT-SI 0.41 1.32 2.15 424% 1.74 

NO-SE 3.43 4.97 4.97 45% 1.54 

BE-FR 3.52 3.7 4.97 41% 1.45 

FR-IE 

  
1.4 inf 1.4 

LT-SE 0.67 0.7 2 199% 1.33 

CZ-DE 3.05 3.2 4.26 40% 1.21 

FI-SE 3 3.15 4.1 37% 1.1 

DK-NO 1.62 1.7 2.64 63% 1.02 

DK-SE 1.97 2.86 2.98 51% 1.01 

FI-NO 0.1 0.1 1.1 1000% 1 

GB-IE 0.86 1.4 1.85 115% 0.99 

GB-NL 1.23 1.29 2 63% 0.77 

CH-FR 3.05 3.7 3.8 25% 0.75 

LT-LV 1.43 2.15 2.15 50% 0.72 

DK-GB 

  
0.7 inf 0.7 
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PL-SE 0.57 0.6 1.2 111% 0.63 

AT-HU 0.86 1.46 1.46 70% 0.6 

EE-LV 0.76 1.34 1.34 76% 0.58 

AT-CH 1.14 1.93 1.7 49% 0.56 

EE-FI 0.95 1 1.5 58% 0.55 

HU-SI 0.76 0.8 1.2 58% 0.44 

AT-CZ 1.71 1.8 2.11 23% 0.4 

DE-NL 4.62 4.85 5 8% 0.38 

PL-SK 0.76 0.88 0.99 30% 0.23 

CZ-SK 2.38 2.5 2.5 5% 0.12 

CZ-PL 1.9 2 2 5% 0.1 

HU-SK 1.95 2.05 2.05 5% 0.1 

LT-PL 1.64 1.72 1.72 5% 0.08 

BE-LU 0.95 1 1 5% 0.05 

IT-MT 0.19 0.2 0.2 5% 0.01 

HR-IT 0 0 0 inf 0 



 

 

 

  

GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the 
address of the centre nearest you at: https://europa.eu/european-union/contact_en 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this 
service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

- at the following standard number: +32 22999696, or 

- by electronic mail via: https://europa.eu/european-union/contact_en 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa 
website at: https://europa.eu/european-union/index_en 

EU publications 
You can download or order free and priced EU publications from EU Bookshop at: 

https://publications.europa.eu/en/publications. Multiple copies of free publications may be obtained by 

contacting Europe Direct or your local information centre (see https://europa.eu/european-

union/contact_en). 

https://europa.eu/european-union/contact_en
https://europa.eu/european-union/contact_en
https://europa.eu/european-union/index_en
https://publications.europa.eu/en/publications
https://europa.eu/european-union/contact_en
https://europa.eu/european-union/contact_en


 

 

 

K
J-N

A
-2

9
6
9
5
-E

N
-N

 

doi:10.2760/540707 

ISBN 978-92-76-00820-0 


	Conclusion
	1 Introduction
	2 Methodology
	2.1 2050 scenario by JRC-EU-TIMES
	2.1.1 Competing technologies for H2 production
	2.1.2 A power system based on electrolysers

	2.2 The 2050 power system into METIS

	3 The 2050 renewable-based power system
	3.1 Installed capacities
	3.1.1 Thermal capacity vs reversible electrolysers

	3.2 Interconnections
	3.3 Demand
	3.3.1 Modelling the electrolysers
	3.3.2 Discussion on deriving the willingness to pay (WTP) price

	3.4 Summary

	4 Modelling results
	4.1 The fuel mix
	4.2 Renewables production and curtailment
	4.3 Electrolyser operation
	4.4 Marginal electricity prices
	4.5 Production cost of H2
	4.6 Generator income vs Electrolyser cost
	4.7 Summary and conclusions

	5 Participation of the electrolyser fleet in the power market
	5.1 Mirroring the current power system to 2050
	5.2 The electrolyser fleet as a price-setter
	5.3 Fostering competition among electrolyser operators

	6 Conclusions and possible further work
	6.1 Possible further work

	References
	List of abbreviations and definitions
	List of figures
	List of tables
	Annexes
	Annex 1. A description of the models
	Annex 2. Renewable potentials
	Annex 3. Interconnection capacities


